Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Biochem ; 46(12): e14420, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36125865

RESUMEN

We evaluated the effects of supplementation of L-alanine and L-glutamine on blood glucose levels and biochemical parameters in alloxan-induced diabetic rat. Forty-nine animals were distributed into seven equal groups. Except for the non-diabetic control, diabetes was induced in all groups by intravenous alloxan injection followed by daily supplementation with amino acids for 14 days. Weight and blood glucose were monitored during supplementation, while biochemical parameters such as liver and renal functions, lipid profile, and antioxidant markers were evaluated post-intervention. A significant increase (p < .05) in weight and decrease in blood glucose were observed in the amino acid(s) treated groups. The supplementation with both amino acids restored important tissue antioxidants, liver and kidney functions and rescued islets cells degeneration. Histopathological examinations of important tissues showed the restoration of alloxan-induced physiopathological changes by the amino acids. Thus, these amino acids might serve as nutraceuticals for the management and treatment of diabetes. PRACTICAL APPLICATIONS: The discovery and production of antidiabetic bioactive compounds are often challenging, and the existing antidiabetic drugs are expensive. Amino acids are key regulators of glucose metabolism, insulin secretion, and insulin sensitivity; thus, they can play a crucial role in alleviating diabetes. Here, we present findings that strongly suggest the potential of pure amino acids (L-alanine and L-glutamine) for the management and treatment of diabetes. We show that these amino acids, when supplemented singly or coadministered can lower blood glucose levels and restore several other biochemical parameters implicated in diabetes. Hence, these cheap amino acids may be consumed as nutraceuticals or food supplements by diabetics for the treatment/management of diabetes. Foods rich in these amino acids may also be consumed as part of the diet of diabetic patients.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Ratas , Animales , Glucemia/metabolismo , Glutamina/efectos adversos , Ratas Wistar , Aloxano/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/farmacología , Antioxidantes/uso terapéutico , Alanina/efectos adversos
2.
Sci Total Environ ; 671: 19-27, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30927724

RESUMEN

Bacterial laccases are now known to be abundant in soil and to function outside of the cell facilitating the bacterial degradation of lignin. In this study we wanted to test the hypotheses that: i) Such enzymes can be identified readily in stratified paleosols using metagenomics approaches, ii) The distribution of these genes as potential 'public good' proteins in soil is a function of the soil environment, iii) Such laccase genes can be readily retrieved and expressed in E. coli cloning systems to demonstrate that de novo assembly processes can be used to obtain similar metagenome-derived enzyme activities. To test these hypotheses, in silico gene-targeted assembly was employed to identify genes encoding novel type B two-domain bacterial laccases from alpine soil metagenomes sequenced on an Illumina MiSeq sequencer. The genes obtained from different strata were heterologously cloned, expressed and the gene products were shown to be active against two classical laccase substrates. The use of a metagenome-driven pipeline to obtain such active biocatalysts has demonstrated the potential for gene mining to be applied systematically for the discovery of such enzymes. These data ultimately further demonstrate the application of soil pedology methods to environmental enzyme discovery. As an interdisciplinary effort, we can now establish that paleosols can serve as a useful source of novel biocatalytic enzymes for various applications. We also, for the first time, link soil stratigraphy to enzyme profiling for widespread functional gene activity in paleosols.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/análisis , Lacasa/análisis , Metagenoma , Microbiología del Suelo , Suelo/química , Clonación Molecular , Escherichia coli/genética , Francia , Italia
3.
Genome Announc ; 6(1)2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29301890

RESUMEN

We report here the draft genome sequence of Rhodococcus sp. strain NCIMB 12038, an industrially important bacterium, possessing a large and diverse repertoire of genes involved in the biotransformation of various organic compounds, including naphthalene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...