Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Innate Immun ; 15(1): 647-664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37607510

RESUMEN

An unstable influenza genome leads to the virus resistance to antiviral drugs that target viral proteins. Thus, identification of host factors essential for virus replication may pave the way to develop novel antiviral therapies. In this study, we investigated the roles of the poly(ADP-ribose) polymerase enzyme, tankyrase 1 (TNKS1), and the endogenous small noncoding RNA, miR-9-1, in influenza A virus (IAV) infection. Increased expression of TNKS1 was observed in IAV-infected human lung epithelial cells and mouse lungs. TNKS1 knockdown by RNA interference repressed influenza viral replication. A screen using TNKS1 3'-untranslation region (3'-UTR) reporter assays and predicted microRNAs identified that miR-9-1 targeted TNKS1. Overexpression of miR-9-1 reduced influenza viral replication in lung epithelial cells as measured by viral mRNA and protein levels as well as virus production. miR-9-1 induced type I interferon production and enhanced the phosphorylation of STAT1 in cell culture. The ectopic expression of miR-9-1 in the lungs of mice by using an adenoviral viral vector enhanced type I interferon response, inhibited viral replication, and reduced susceptibility to IAV infection. Our results indicate that miR-9-1 is an anti-influenza microRNA that targets TNKS1 and enhances cellular antiviral state.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Interferón Tipo I , MicroARNs , Tanquirasas , Animales , Humanos , Ratones , Antivirales/farmacología , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Gripe Humana/genética , MicroARNs/genética , Tanquirasas/genética , Replicación Viral
2.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445242

RESUMEN

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced ß-catenin protein, but not mRNA levels. The reduction of ß-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.


Asunto(s)
Proliferación Celular , Fibroblastos/metabolismo , Pulmón/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Línea Celular , Humanos , ARN Largo no Codificante/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , beta Catenina/genética
3.
J Cell Mol Med ; 24(11): 5984-5997, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32343493

RESUMEN

Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. Conventional diagnostic techniques are ineffective and insufficient to diagnose CHD with higher accuracy. To use the circulating microRNAs (miRNAs) as non-invasive, specific and sensitive biomarkers for diagnosing of CHD, 203 patients with CHD and 144 age-matched controls (126 high-risk controls and 18 healthy volunteers) were enrolled in this study. The direct S-Poly(T)Plus method was used to identify novel miRNAs expression profile of CHD patients and to evaluate their clinical diagnostic value. This method is an RNA extraction-free and robust quantification method, which simplifies procedures, reduces variations, in particular increases the accuracy. Twelve differentially expressed miRNAs between CHD patients and high-risk controls were selected, and their performances were evaluated in validation set-1 with 96 plasma samples. Finally, six (miR-15b-5p, miR-29c-3p, miR-199a-3p, miR-320e, miR-361-5p and miR-378b) of these 12 miRNAs were verified in validation set-2 with a sensitivity of 92.8% and a specificity of 89.5%, and the AUC was 0.971 (95% confidence interval, 0.948-0.993, P < .001) in a large cohort for CHD patients diagnosis. Plasma fractionation indicated that only a small amount of miRNAs were assembled into EVs. Direct S-Poly(T)Plus method could be used for disease diagnosis and 12 unique miRNAs could be used for diagnosis of CHD.


Asunto(s)
Bioensayo , MicroARN Circulante/sangre , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/genética , Perfilación de la Expresión Génica , Poli T/metabolismo , Estudios de Casos y Controles , Análisis por Conglomerados , Estudios de Cohortes , Enfermedad Coronaria/sangre , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Factores de Riesgo
4.
J Transl Med ; 17(1): 316, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547825

RESUMEN

BACKGROUND: Advances in microRNAs (miRNAs) biomarkers have generated disease markers with potential clinical values. However, none of these published results have been applied in clinic until today. The main reason could be the lack of simple but robust miRNA measurements. METHODS: We built up a simple but ultrasensitive RT-qPCR protocol, Direct S-Poly(T) Plus assay, for detecting miRNAs without RNA purification. In this study, the method was optimized and compared with other RNA purification-based miRNA assays, and the sensitivity was tested. Using Direct S-Poly(T) Plus method, seven potential miRNA biomarkers of colorectal cancer were validated. RESULTS: It is possible to detect approximately 100 miRNAs with minimal plasma inputs (20 µl) and time (~ 140 min) with this approach. The sensitivity of this method was 2.7-343-fold higher than that of the stem-loop method, and comparable with S-Poly(T) plus method. 7 validated miRNA biomarkers of colorectal cancer by Direct S-Poly(T) plus assay could discriminate colorectal cancer stage I from healthy individuals, and promised satisfactory discrimination with the area under receiver operating characteristic (ROC) curve ranging from 0.79 to 0.94 (p value < 0.001). CONCLUSIONS: This simple and robust protocol may have strong impact on the development of specific miRNAs as biomarkers in clinic.


Asunto(s)
Bioensayo/métodos , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , MicroARNs/genética , Poli T/metabolismo , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/sangre , Curva ROC
5.
J Anim Sci Biotechnol ; 10: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31198556

RESUMEN

BACKGROUND: Tetracycline (Tet)-regulated expression system has become a widely applied tool to control gene activity. This study aimed to improve the Tet-on system with superior regulatory characteristics. RESULTS: By comprehensively comparing factors of transactivators, Tet-responsive elements (TREs), orientations of induced expression cassette, and promoters controlling the transactivator, we developed an optimal Tet-on system with enhanced inducible efficiency and lower leakiness. With the system, we successfully performed effective inducible and reversible expression of microRNA, and presented a more precise and easily reproducible fine-tuning for confirming the target of a miRNA. Finally, the system was applied in CRISPR/Cas9-mediated knockout of nuclear factor of activated T cells-5 (NFAT5), a protective transcription factor in cellular osmoregulation. CONCLUSIONS: This study established an improved Tet-on system for powerful and stringent gene regulation in functional genetic studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...