Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Chemosphere ; 351: 141180, 2024 Mar.
Article En | MEDLINE | ID: mdl-38218237

In contemporary wastewater treatment industry, advanced oxidation techniques, membrane filtration, ion exchange, and reverse osmosis are used to treat chemically loaded wastewater. All these methods required highly toxic oxidizing chemicals, high capital investment in membrane/filter materials, and the installation of sophisticated equipment. Wastewater treatment through an adsorption process using biomass-based adsorbent is economical, user-friendly, and sustainable. Neem tree waste has been explored as an adsorbent for wastewater treatment. The chemical components in the neem biomass include carbohydrates, fat, fiber, cellulose, hemicellulose, and lignin, which support the functionalization of neem biomass. Moreover, adsorbent preparation from renewable resources is not only cost-effective and environmentally friendly but also helps in waste management for sustainable growth. Contemporary researchers explored the pre- and post-surface-modified neem biomass adsorbents in scavenging the pollutants from contaminated water. This review extensively explores the activation process of neem biomass, physical and chemical methods of surface modification mechanism, and the factors affecting surface modification. The pollutant removal through pre and post-surface-modified neem biomass adsorbents was also summarized. Furthermore, it also provides a comprehensive summary of the factors that affect the adsorption performance of the neem biomass-derived adsorbents against dyes, metal ions, and other emerging pollutants. Understanding the surface-modification mechanisms and the adsorption efficiency factor of adsorbents will help in harnessing their potential for more efficiently combatting environmental pollution and making strides toward a greener and more sustainable future.


Azadirachta , Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Biomass , Wastewater , Water Purification/methods , Adsorption
2.
Glob Health Sci Pract ; 11(Suppl 2)2023 Dec 18.
Article En | MEDLINE | ID: mdl-38110201

We describe the responsive feedback (RF) approach experience of a nongovernmental organization, Girls Health Champions (now known as Adolescent Health Champions [AHC]), that undertakes peer education interventions in Mumbai, India, schools to improve gender equality and health outcomes for adolescents aged 13-19 years. AHC used the RF approach at the onset of the COVID-19 pandemic in light of uncertainties stemming from school closures and the negative impact of the lockdown on adolescents' physical and mental health. Using an RF approach, AHC was able to: (1) understand pandemic-specific challenges faced by adolescents; (2) overhaul its theory of change; (3) pilot new modes of intervention delivery; (4) design a curriculum for parents/guardians and a COVID-19 module; (5) design an AHC mobile app; (6) develop a new, more gender-inclusive name and visual identity; (7) change the overall structure, adolescent-friendly nature, and agility of the organization; (8) and help clarify future directions taken by the organization. Overall, use of the RF approach had significant positive impacts on AHC as an organization, such as changes in organizational culture, deeper stakeholder engagement, and innovation, and was instrumental in AHC's growth, development, and pandemic response. This article outlines the steps of the process, from initial informal stakeholder consultations to the eventual formalization of the RF approach into the everyday working of AHC through the creation of a youth advisory board. We discuss challenges, such as time and resource constraints encountered; strategies for dealing with such challenges; and general key findings and learnings from this experience that could be beneficial to other youth- and community-serving organizations.


Adolescent Health , COVID-19 , Female , Adolescent , Humans , Pandemics , Feedback , COVID-19/prevention & control , Communicable Disease Control
3.
Polymers (Basel) ; 14(19)2022 Oct 03.
Article En | MEDLINE | ID: mdl-36236095

The growing concern about pollution produced by plastic waste and the consequent environmental dangers has led to increased interest in replacing plastics with sustainable and biodegradable alternatives. Biopolymers such as seaweed have been examined for their film-forming characteristics to make edible films for packaging applications. This study aimed to prepare biopolymeric packaging films through a solvent-casting process using natural red seaweed (Kappaphycus alvarezii) and kenaf cellulose nanofiber (CNF), followed by film surface treatment using silane. The hydrophobic properties of the seaweed/CNF biopolymer were examined through water solubility (WS), moisture absorption capacity (MAC), water vapor permeability (WVP), and contact angle (CA) measurements. Fourier transform infra-red (FT-IR) film spectra clearly showed successful modification of the seaweed film (SF) by silane and the incorporation of kenaf CNF over the surface of the seaweed film. The wettability-related analysis showed positive results in determining the modified film's hydrophobicity properties. Film degradation analysis using the soil burial method showed a lower degradation rate for films with a higher CNF loading. Overall, the characterization results of the seaweed/CNF biopolymer film predicted hydrophobicity properties. The slow degradation rate was improved with surface modification using silane treatment and the incorporation of kenaf CNF filler with the seaweed matrix. As a result, we found that the seaweed/CNF biopolymer film could be used as high-grade packaging material in many potential applications.

4.
Molecules ; 27(18)2022 Sep 15.
Article En | MEDLINE | ID: mdl-36144760

Patchouli extracts and oils extracted from Pogostemon cablin are essential raw material for the perfume and cosmetics industries, in addition to being used as a natural additive for food flavoring. Steam distillation is a standard method used for plant extraction. However, this method causes thermal degradation of some essential components of the oil. In this study, patchouli was extracted with supercritical carbon dioxide (SC-CO2) under different conditions of pressure (10-30 MPa) and temperature (40-80 °C). The chemical components of the crude extracted oil and the functional group were characterized using gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The extraction with supercritical carbon dioxide was shown to provide a higher yield (12.41%) at a pressure of 20 MPa and a temperature of 80 °C. Patchouli alcohol, Azulene, δ-Guaiene, and Seychellene are the main bioactive compounds that GC-MS results have identified. FTIR spectra showed alcohol, aldehyde, and aromatic ring bond stretching peaks. Extraction of patchouli with supercritical carbon dioxide provided a higher yield and a better quality of the crude patchouli oil.


Chromatography, Supercritical Fluid , Oils, Volatile , Perfume , Pogostemon , Aldehydes , Azulenes , Carbon Dioxide , Chromatography, Supercritical Fluid/methods , Oils, Volatile/chemistry , Plant Extracts , Plant Oils/chemistry , Spectroscopy, Fourier Transform Infrared , Steam
5.
Materials (Basel) ; 15(15)2022 Jul 22.
Article En | MEDLINE | ID: mdl-35897550

Cassava is a type of crop popular in Asian countries. It can be easily cultivated and grows to a mature plant in 9 months. Considering its availability, this work studied activated carbon based on cassava stem. Ofloxacin was chosen as the adsorbate, simulating the wastewater from the pharmaceutical industry. Cassava stem was ground into particles and heated to the activated state, 787 °C. The cassava-stem-activated carbon was further treated with the surface modifier, namely sodium hydroxide and zinc chloride, to study the improvement in ofloxacin adsorption. Prepared adsorbents were characterised using the SEM, FT-IR, XRD, DSC and TGA methods before being evaluated through batch adsorption, thermodynamic, and kinetic studies. The surface area analysis indicates that treatment of the activated carbon with NaOH and ZnCl2 increases the surface area due to the removal of organic content by the chemicals. Better ofloxacin adsorption of all activated carbon samples can be obtained with solutions at pH 8. An endothermic reaction was predicted, shown by higher ofloxacin adsorption at a higher temperature, supported by a positive value of ΔH° in the thermodynamic studies. The negative values of ΔG° revealed that adsorptions were spontaneous. The higher R2 values indicate that the adsorption process follows the pseudo-second-order equation of kinetic study. The maximum adsorption capacities are 42.37, 62.11, 62.89 and 58.82 mg/g for raw cassava stem (RC), cassava-stem-activated carbon (AC), NaOH-modified cassava-stem-activated carbon (NAC), and ZnCl2 modified cassava-stem-activated carbon (ZAC). The adsorption capacity is good compared to previous works by other researchers, making it a possible alternative material for the pharmaceutical industry's wastewater treatment.

6.
Oxid Med Cell Longev ; 2022: 1646687, 2022.
Article En | MEDLINE | ID: mdl-35620573

The alarming rise in diabetes owing to drug resistance necessitates the implementation of prompt countermeasures in the treatment module of diabetes. Due to their unique physicochemical features, silver nanoparticles may have potential applications in the medical and pharmaceutical industries. Silver nanoparticles (AgNPs) were synthesized from the culture filtrate of Salmonella enterica (ATCC-14028). UV-Vis spectrophotometry, FTIR, SEM, and energy dispersive X-rays were used in the characterization of the nanoparticles. Transmission electron microscopy (TEM) revealed that AgNPs are spherical and highly scattered and vary in size from 7.18 nm to 13.24 nm. AgNP stability and protein loss were confirmed by thermogravimetric analysis (TGA) at different temperatures. The AgNPs had excellent antibacterial activity and a strong synergistic effect against methicillin-resistant bacteria Staphylococcus aureus (MRSA) ATCC-4330 and Streptococcus epidermis (MRSE) ATCC-51625. The DPPH experiment revealed that the AgNPs had high antioxidant activity. The antidiabetic assay revealed that these AgNPs had an IC50 for alpha-amylase of 428.60 µg/ml and an IC50 for alpha-glucosidase of 562.02 µg/ml. Flow cytometry analysis of Hep-2 cells treated with AgNPs (40 µg/ml) revealed higher expression of 2-NBDG glucose absorption (uptake) compared to control metformin. These AgNPs have promising antidiabetic properties and could be used in pharmaceuticals and biomedical industries.


Liver Neoplasms , Metal Nanoparticles , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology , Deoxyglucose/analogs & derivatives , Glucose , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry
7.
Chemosphere ; 296: 134036, 2022 Jun.
Article En | MEDLINE | ID: mdl-35202667

Avocado is one of the most important fruits with a high nutritional content; this fruit is consumed and cultivated worldwide. It is originally grown in Central America and the West Indies islands. But it is now cultivated in the tropical and subtropical regions of the world. Avocado waste is an abundantly available raw material that can be converted into adsorbents to remove different pollutants from aqueous solutions. This review article explores the utilization of avocado waste as raw material to develop an efficient adsorbent and its use against various toxicants. Many research papers have been published on the use of avocado waste-derived adsorbents in the recent past. The factors that affect the adsorption processes are examined in light of published references. Some critical adsorption parameters, such as equilibrium (isotherms), kinetics, and thermodynamics, have been reported in the published literature; these parameters and their data are critically discussed. The characterization, mechanism, and surface chemistry of avocado waste-derived adsorbents are also discussed. To date, no review article on avocado waste-derived adsorbents is available, where researchers can get an overview of the preparation, characterization, and adsorption attributes of avocado waste adsorbents against various pollutants. Recent literature demonstrates the effective utilization of avocado waste as a cleaner and sustainable raw material for the production of adsorbents.


Environmental Pollutants , Persea , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Thermodynamics , Water Pollutants, Chemical/chemistry
8.
J Environ Manage ; 301: 113765, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34592665

The central composite rotatable design (CCD) of response surface methodology (RSM) was used to optimize aluminum dispersed bamboo activated carbon preparation. The independent variables selected for optimization are activating agent (AlCl3) concentration (mol/L), activation temperature (°C), and activation time (min.). The independent variable's response change was observed through the percentage adsorption efficiency of Ciprofloxacin hydrochloride (CIP) antibiotics. The maximum CIP adsorption efficiency was found to be 93.6 ± 0.36% (13.36 mg/g) for the adsorbent prepared at AlCl3 concentration 2.0 mol/L, activation temperature 900 °C, and activation time 120 min. The adsorption efficiency was recorded at the natural pH (7.9) of the adsorbent (3 g/L)-adsorbate (50 mL solution of 50 ppm) mixture. The Al-dispersed bamboo activated carbon was characterized for its surface morphology, surface elemental compositions, molecular crystallinity, surface area, pore morphology, and surface functional groups. The mechanism of adsorbent surface formation and CIP adsorption sites were explored. The characterization data and mechanism study will help in deciding possible future applications in other fields of study.


Ciprofloxacin , Water Pollutants, Chemical , Adsorption , Aluminum , Anti-Bacterial Agents , Charcoal , Ciprofloxacin/analysis , Kinetics , Water Pollutants, Chemical/analysis
9.
J Neural Eng ; 18(4)2021 03 30.
Article En | MEDLINE | ID: mdl-33691289

Objective.Responsive neurostimulation (RNS) is an effective treatment for controlling seizures in patients with drug-resistant focal epilepsy who are not suitable candidates for resection surgery. A lack of tools for detecting and characterizing potential response biomarkers, however, contributes to a limited understanding of mechanisms by which RNS improves seizure control. We developed a method to quantify ictal frequency modulation, previously identified as a biomarker of clinical responsiveness to RNS.Approach.Frequency modulation is characterized by shifts in power across spectral bands during ictal events, over several months of neurostimulation. This effect was quantified by partitioning each seizure pattern into segments with distinct spectral content and measuring the extent of change from the baseline distribution of spectral content using the squared earth mover's distance.Main results.We analyzed intracranial electroencephalography data from 13 patients who received RNS therapy, six of whom exhibited frequency modulation on expert evaluation. Patients in the frequency modulation group had, on average, significantly larger and more sustained changes in their squared earth mover's distances (mean = 13.97 × 10-3± 1.197 × 10-3). In contrast, those patients without expert-identified frequency modulation exhibited statistically insignificant or negligible distances (mean = 4.994 × 10-3± 0.732 × 10-3).Significance.This method is the first step towards a quantitative, feedback-driven system for systematically optimizing RNS stimulation parameters, with an ultimate goal of truly personalized closed-loop therapy for epilepsy.


Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Biomarkers , Electrocorticography , Epilepsy/therapy , Humans
10.
Cureus ; 13(2): e13240, 2021 Feb 09.
Article En | MEDLINE | ID: mdl-33728189

Initiation of preoxygenation prior to anesthetic induction and tracheal intubation is a commonly recognized technique intended to boost oxygen reservoirs in the body and thus slow the progression of desaturation of arterial hemoglobin at times of apnea. Even though challenges associated with ventilation and intubation are inconsistent, it is preferable for all patients to necessitate preoxygenation. The effectiveness of preoxygenation is measured by its performance and efficiency. Determinant factors of efficacy indices include rises in the alveolar O2 fraction (FAO2), reductions in the alveolar nitrogen fraction (FAN2), and improvements in the arterial O2 stress (PAO2). The effectiveness or efficiency of preoxygenation during apnea is evaluated from the declining trend in level of oxyhemoglobin desaturation (SAO2). The maximal risk associated with preoxygenation generally comprises delayed diagnosis of oesophageal intubation, absorption atelectasis, generation of reactive oxygen species, and incidences of adverse hemodynamic results. Since the time of preoxygenation is minimal, there are limited hemodynamic effects and the aggregation of reactive oxygen species to counteract its effectiveness. In general, three methods of preoxygenation techniques are followed for the routine procedures, namely, deep breathing, rapid breathing at fraction of inspired oxygen (FiO2) of 1 for two to five minutes, and the four vital capacities method. Health professionals, especially anesthesiologists specialized in Ear Nose and Throat (ENT) and traumatology, must be empowered by alternative methods like trans-tracheal ventilation to resolve life-threatening medical emergencies. Equipment accessibility and needful training are two essential components that are recommended for significant preparedness. The present article reviews the advantages conferred by the preoxygenation techniques with special attention to the high-risk population. It also details the inadequacies and the risks associated with the preoxygenation technique.

11.
J Anaesthesiol Clin Pharmacol ; 36(Suppl 1): S109-S115, 2020 Aug.
Article En | MEDLINE | ID: mdl-33100658

Anesthesiologists are amongst the front line warriors in this COVID-19 pandemic. We need to change our preferences and practices to reduce the spread to healthcare workers and patients in the hospital. General anesthesia involves aerosol-generating procedures while ventilating and intubating the patients. Regional anesthesia maintains respiratory functions, circumvents airway instrumentation and helps to limit viral transmission. This makes a strong case to patronize regional anaesthesia practises whenever possible. Due to various limitations of diagnostic tests available, all patients can be treated as COVID-19 positive and necessary precautions are suggested to limit the transmission. The importance of a practise advisory is to clear the mist around the dos and don'ts to ensure clarity of thoughts leading to improved safety of both patient and health care professional. We propose clinical guidelines for regional anaesthesia practices in COVID-19 positive patient posted for surgery. Furthermore, current recommendations on confirming the COVID-19 negative status is referred. These features are subject to change further with time.

12.
MethodsX ; 7: 100983, 2020.
Article En | MEDLINE | ID: mdl-32742942

This article encompasses the method related to image segmentation of the Field Emission Scanning Electron Microscope (FESEM) images of Acacia Mangium Wood derived Activated Carbons under different conditions. Image segmentation using Hue-Saturation-Value (HSV) thresholding method was adapted to identify the different pattern composition in the grayscale images by varying the intensity Value (V) and keeping Hue (H) and Saturation (S) to zero, and each pattern was considered as one type of element that constituted the Activated Carbon. The algorithm was developed to compute the percentage of each pattern using non-zero pixels, and on the basis of different patterns, different elements having certain percentage of composition were recorded. Later, these results were compared with the Energy Dispersive X-ray Spectroscopy (EDS) to cross check the difference in percentage of each element present at the surface of the Activated Carbon. Part of this result is published in the article [1], "Comparison of surface properties of wood biomass Activated Carbons and their application against rhodamine B and methylene blue dye" Surfaces and Interfaces vol. 11 (2018) pp1-13.•The methods involved will be useful for characterization of Activated Carbon materials.•Image segmentation using HSV thresholding will inspire other researchers to apply similar concept on other materials.•Different patterns obtained for FESEM images using HSV thresholding was able to determine the presence of multiple elements present in the prepared Activated Carbon samples.

13.
Data Brief ; 29: 105225, 2020 Apr.
Article En | MEDLINE | ID: mdl-32154335

The dataset presented here are part of the data planned to produce biodiesel from flaxseed. Biodiesel production from flaxseed oil through transesterification process using KOH as catalyst, and the operating parameters were optimized with the help of face-centered central composite design (FCCD) of response surface methodology (RSM). The operating independent variables selected such as, methanol oil ratio (4:1 to 6:1), catalyst (KOH) weight (0.40-1.0%), temperature (35 °C-65 °C), and reaction time (30 min-60 min) were optimized against biodiesel yield as response. The maximum yield (98.6%) of biodiesel from flaxseed can achieved at optimum methanol oil ratio (5.9:1), catalyst (KOH) weight (0.51%), reaction temperature (59.2 °C), and reaction time (33 min). The statistical significance of the data set was tested through the analysis of variance (ANOVA). These data were the part of the results reported in "Optimization of process variables for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations" Renewable Energy [1].

14.
Data Brief ; 28: 105045, 2020 Feb.
Article En | MEDLINE | ID: mdl-31921950

The optimization data presented here are part of the study planned to remove the caffeine from aqueous solution through the large surface area optimized H3PO4-activated Acacia mangium wood activated carbon (OAMW-AC). The maximum adsorption capacity of the OAMW-AC for caffeine adsorption was achieved (30.3 mg/g) through optimized independent variables such as, OAMW-AC dosage (3.0 g/L), initial caffeine concentration (100 mg/L), contact time (60 min), and solution pH (7.7). The adsorption capacity of OAMW-AC was optimized with the help of rotatable central composite design of response surface methodology. Under the stated optimized conditions for maximum adsorption capacity, the removal efficiency was calculated to be 93%. The statistical significance of the data set was tested through the analysis of variance (ANOVA) study. Data confirmed the statistical model for caffeine adsorption was significant. The regression coefficient (R2) of curve fitting through the quadratic model was found to be 0.9832, and the adjusted regression coefficient was observed to be 0.9675.

15.
Data Brief ; 23: 103845, 2019 Apr.
Article En | MEDLINE | ID: mdl-31372470

The data presented in this article were generated through the gas chromatography (GC) with a flame ionization detector (FID). The flaxseed oil was converted into fatty acid methyl ester (FAME) then used in the GC with FID and observe the retention time of different fatty acid present in the flaxseed oil. The observed retention time was compared with the standard fatty acid to confirm the specific fatty acid presence in the flaxseed oil. The part of the data is used in the article "Optimization of the process variable for biodiesel production by transesterification of flaxseed oil and produced biodiesel characterizations" Renewable Energy journal (Ahmad et al., 2019).

16.
Mater Sci Eng C Mater Biol Appl ; 102: 254-263, 2019 Sep.
Article En | MEDLINE | ID: mdl-31146998

The aim of the current study was to biosynthesize the silver nanoparticles (AgNPs) from the bacterial strain of Bacillus cereus (ATCC 14579) extracellularly. When bacterial extract was challenged with 1 mM silver nitrate (AgNO3) the color of the extract changed into brown confirms the formation of nanoparticles. These nanoparticles were capped with bovine serum albumin (BSA). UV- visible spectroscopy showed the absorption peak at 420 nm indicates the formation of AgNPs. Fourier Infra -red (FTIR) attenuated total reflection (ATR) spectroscopy showed amide and amine group associated with AgNPs that stabilizes the nanoparticles. Energy dispersive x-ray spectroscopy (EDX) showed a strong peak of silver confirms the presence of silver. Thermo gravimetric analysis (TGA) analysis was used to determine the protein degradation showed less protein degradation at higher temperature confirms the stability of nanoparticles. Transmission electron microscopy (TEM) showed the AgNPs are well dispersed and spherical, and 5.37 nm to 17.19 whereas albumin coated nanoparticles are size ranges from 11.26 nm to 23.85 nm. The anticancer effect of capped AgNPs (cAgNPs) showed the IC50 value against breast cancer MCF-7 at 80 µg/mL, intestinal colon cancer HCT- 116 60 µg/mL, and bone cancer osteosarcoma MG-63 cell line80 µg/mL while against normal fibroblast cells 3T3 cells showed the IC50 value at 140 µg/mL. Lactate dehydrogenase assay (LDH) showed higher toxicity on MCF-7, HCT-116, and MG-63 cells. The apoptotic study clearly showed the blebbing of membrane, chromatin condensation due to the production of reactive oxygen species (ROS) by ethidium bromide and acridine orange dual staining method. The DNA analysis showed the complete fragmentation of the DNA of treated cells when compared with control cells.


Antineoplastic Agents/therapeutic use , Apoptosis , Bioengineering , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Serum Albumin, Bovine/chemistry , Silver/therapeutic use , 3T3 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cattle , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , DNA/metabolism , Female , Metal Nanoparticles/ultrastructure , Mice , Neoplasms/pathology , Silver/pharmacology , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
17.
J Environ Manage ; 206: 330-348, 2018 Jan 15.
Article En | MEDLINE | ID: mdl-29100146

This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy.


Musa , Waste Disposal, Fluid , Wastewater , Adsorption , Industrial Waste , Water Pollutants, Chemical , Water Purification
18.
Int J Biol Macromol ; 107(Pt B): 1792-1799, 2018 Feb.
Article En | MEDLINE | ID: mdl-29032214

High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.


Alginates/chemistry , Charcoal/chemistry , Methylene Blue/chemistry , Adsorption , Batch Cell Culture Techniques , Coloring Agents/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Kinetics , Nitrogen/chemistry , Porosity , Solutions , Spectroscopy, Fourier Transform Infrared , Surface Properties , Thermodynamics , Thermogravimetry , Time Factors
19.
Ecotoxicol Environ Saf ; 139: 280-290, 2017 May.
Article En | MEDLINE | ID: mdl-28167440

Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb's free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g.


Charcoal/chemistry , Fluorescent Dyes/chemistry , Phoeniceae , Rhodamines/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Temperature , Thermodynamics
...