Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(16): 3436-3451.e7, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37536343

RESUMEN

During reward-based learning tasks, animals make orofacial movements that globally influence brain activity at the timings of reward expectation and acquisition. These orofacial movements are not explicitly instructed and typically appear along with goal-directed behaviors. Here, we show that reinforcing optogenetic stimulation of dopamine neurons in the ventral tegmental area (oDAS) in mice is sufficient to induce orofacial movements in the whiskers and nose without accompanying goal-directed behaviors. Pavlovian conditioning with a sensory cue and oDAS elicited cue-locked and oDAS-aligned orofacial movements, which were distinguishable by a machine-learning model. Inhibition or knockout of dopamine D1 receptors in the nucleus accumbens inhibited oDAS-induced motion but spared cue-locked motion, suggesting differential regulation of these two types of orofacial motions. In contrast, inactivation of the whisker primary motor cortex (wM1) abolished both types of orofacial movements. We found specific neuronal populations in wM1 representing either oDAS-aligned or cue-locked whisker movements. Notably, optogenetic stimulation of wM1 neurons successfully replicated these two types of movements. Our results thus suggest that accumbal D1-receptor-dependent and -independent neuronal signals converge in the wM1 for facilitating distinct uninstructed orofacial movements during a reward-based learning task.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Ratones , Animales , Núcleo Accumbens/fisiología , Área Tegmental Ventral/fisiología , Movimiento , Neuronas Dopaminérgicas/fisiología , Receptores de Dopamina D1 , Recompensa
2.
Neurosci Res ; 153: 1-7, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31276699

RESUMEN

The hippocampal-entorhinal system is essential for navigation and memory. The first description of spatially tuned place cell activity in area CA1 of the hippocampus suggested that spatial representations are not centered on self, but are rather allocentric. This idea is supported by extensive neurophysiological data, including temporally coordinated sequential activity during theta phase precession and sharp wave ripples. CA1 pyramidal neurons represent other information as well, such as objects, time, and events. Additionally, our recent research revealed that CA1 place cells jointly represent the spatial location of self and a conspecific, further supporting the idea of allocentric spatial representations by CA1 place cells. The neural mechanisms underlying CA1 spatial representations have long remained a mystery, but recent research examining circuit dynamics and synaptic plasticity suggests that the temporal relationships of inputs from entorhinal cortex layer III and CA3 could be critical for generating spatially tuned CA1 activity. Here, I review studies of the hippocampal representations of space and other features, and discuss the related networks and synaptic mechanisms supporting the representations of these features.


Asunto(s)
Región CA1 Hipocampal/fisiología , Memoria/fisiología , Potenciales de Acción/fisiología , Animales , Corteza Entorrinal , Vías Nerviosas/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Ritmo Teta/fisiología
3.
Science ; 359(6372): 213-218, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29326273

RESUMEN

An animal's awareness of its location in space depends on the activity of place cells in the hippocampus. How the brain encodes the spatial position of others has not yet been identified. We investigated neuronal representations of other animals' locations in the dorsal CA1 region of the hippocampus with an observational T-maze task in which one rat was required to observe another rat's trajectory to successfully retrieve a reward. Information reflecting the spatial location of both the self and the other was jointly and discretely encoded by CA1 pyramidal cells in the observer rat. A subset of CA1 pyramidal cells exhibited spatial receptive fields that were identical for the self and the other. These findings demonstrate that hippocampal spatial representations include dimensions for both self and nonself.


Asunto(s)
Región CA1 Hipocampal/fisiología , Células de Lugar/fisiología , Células Piramidales/fisiología , Percepción Espacial , Conducta Espacial , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Masculino , Aprendizaje por Laberinto , Modelos Biológicos , Ratas , Ratas Long-Evans , Procesamiento Espacial
4.
J Biol Chem ; 290(23): 14493-503, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25882840

RESUMEN

In addition to its role in DNA repair, nuclear poly(ADP-ribose) polymerase-1 (PARP-1) mediates brain damage when it is over-activated by oxidative/nitrosative stress. Nonetheless, it remains unclear how PARP-1 is activated in neuropathological contexts. Here we report that PARP-1 interacts with a pool of glyceradehyde-3-phosphate dehydrogenase (GAPDH) that translocates into the nucleus under oxidative/nitrosative stress both in vitro and in vivo. A well conserved amino acid at the N terminus of GAPDH determines its protein binding with PARP-1. Wild-type (WT) but not mutant GAPDH, that lacks the ability to bind PARP-1, can promote PARP-1 activation. Importantly, disrupting this interaction significantly diminishes PARP-1 overactivation and protects against both brain damage and neurological deficits induced by middle cerebral artery occlusion/reperfusion in a rat stroke model. Together, these findings suggest that nuclear GAPDH is a key regulator of PARP-1 activity, and its signaling underlies the pathology of oxidative/nitrosative stress-induced brain damage including stroke.


Asunto(s)
Encéfalo/patología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Encéfalo/metabolismo , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Activación Enzimática , Gliceraldehído-3-Fosfato Deshidrogenasas/análisis , Humanos , Infarto de la Arteria Cerebral Media/enzimología , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Nitrocompuestos/análisis , Nitrocompuestos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/análisis , Ratas , Ratas Wistar
5.
Proc Natl Acad Sci U S A ; 111(17): 6455-60, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24737889

RESUMEN

Dopamine (DA) transmission from the ventral tegmental area (VTA) is critical for controlling both rewarding and aversive behaviors. The transient silencing of DA neurons is one of the responses to aversive stimuli, but its consequences and neural mechanisms regarding aversive responses and learning have largely remained elusive. Here, we report that optogenetic inactivation of VTA DA neurons promptly down-regulated DA levels and induced up-regulation of the neural activity in the nucleus accumbens (NAc) as evaluated by Fos expression. This optogenetic suppression of DA neuron firing immediately evoked aversive responses to the previously preferred dark room and led to aversive learning toward the optogenetically conditioned place. Importantly, this place aversion was abolished by knockdown of dopamine D2 receptors but not by that of D1 receptors in the NAc. Silencing of DA neurons in the VTA was thus indispensable for inducing aversive responses and learning through dopamine D2 receptors in the NAc.


Asunto(s)
Conducta Animal , Neuronas Dopaminérgicas/fisiología , Núcleo Accumbens/metabolismo , Optogenética/métodos , Receptores de Dopamina D2/metabolismo , Área Tegmental Ventral/citología , Animales , Conducta de Elección , Condicionamiento Psicológico , Oscuridad , Dopamina/metabolismo , Regulación hacia Abajo/genética , Femenino , Masculino , Ratones , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba/genética
6.
PLoS One ; 8(5): e61956, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658702

RESUMEN

The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6(+) cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6(+) cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP(+) cells, while enhancer 1056 is active in Olig2(+) cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments.


Asunto(s)
Cuerpos Embrioides/fisiología , Elementos de Facilitación Genéticos , Células-Madre Neurales/fisiología , Prosencéfalo/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Separación Celular , Células Cultivadas , Cuerpos Embrioides/trasplante , Femenino , Citometría de Flujo , Neuronas GABAérgicas/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Coloración y Etiquetado , Transcriptoma , Transducción Genética , Proteína Fluorescente Roja
7.
Neuron ; 78(3): 537-44, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23602500

RESUMEN

The posterior septum consisting of the triangular septum (TS) and the bed nucleus of the anterior commissure (BAC) is predominantly linked with the medial habenula (MHb) and has been implicated in the control of anxiety and fear responses. However, its anatomical and functional linkage has largely remained elusive. We established a transgenic mouse model in which the TS and BAC projection neurons were visualized by GFP fluorescence and selectively eliminated by immunotoxin-mediated cell targeting. The linkage between the TS/BAC and the MHb constitutes two parallel pathways composed of the TS-ventral MHb, the core part of the interpeduncular nucleus (IPN), and the BAC-dorsal MHb, the peripheral part of the IPN. Ablation of the TS and BAC projection neurons selectively impaired anxiety and enhanced fear responses and learning, respectively. Inputs from the TS and BAC to the MHb are thus segregated by two parallel pathways and play specialized roles in controlling emotional behaviors.


Asunto(s)
Ansiedad/fisiopatología , Miedo/fisiología , Habénula/fisiología , Neuronas/fisiología , Tabique del Cerebro/fisiología , Transmisión Sináptica/fisiología , Animales , Aprendizaje/fisiología , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología
8.
Proc Natl Acad Sci U S A ; 110(1): 342-7, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248274

RESUMEN

The basal ganglia-thalamocortical circuitry plays a central role in selecting actions that achieve reward-seeking outcomes and avoid aversive ones. Inputs of the nucleus accumbens (NAc) in this circuitry are transmitted through two parallel pathways: the striatonigral direct pathway and the striatopallidal indirect pathway. In the NAc, dopaminergic (DA) modulation of the direct and the indirect pathways is critical in reward-based and aversive learning and cocaine addiction. To explore how DA modulation regulates the associative learning behavior, we developed an asymmetric reversible neurotransmission-blocking technique in which transmission of each pathway was unilaterally blocked by transmission-blocking tetanus toxin and the transmission on the intact side was pharmacologically manipulated by local infusion of a receptor-specific agonist or antagonist. This approach revealed that the activation of D1 receptors and the inactivation of D2 receptors postsynaptically control reward learning/cocaine addiction and aversive learning in a direct pathway-specific and indirect pathway-specific manner, respectively. Furthermore, this study demonstrated that aversive learning is elicited by elaborate actions of NMDA receptors, adenosine A2a receptors, and endocannabinoid CB1 receptors, which serve as key neurotransmitter receptors in inducing long-term potentiation in the indirect pathway. Thus, reward and aversive learning is regulated by pathway-specific neural plasticity via selective transmitter receptors in the NAc circuit.


Asunto(s)
Aprendizaje por Asociación/fisiología , Reacción de Prevención/fisiología , Trastornos Relacionados con Cocaína/fisiopatología , Plasticidad Neuronal/fisiología , Núcleo Accumbens/fisiología , Recompensa , Análisis de Varianza , Animales , Humanos , Ratones , Vías Nerviosas/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Toxina Tetánica
9.
Proc Natl Acad Sci U S A ; 109(31): 12764-9, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802650

RESUMEN

In the basal ganglia, inputs from the nucleus accumbens (NAc) are transmitted through both direct and indirect pathways and control reward-based learning. In the NAc, dopamine (DA) serves as a key neurotransmitter, modulating these two parallel pathways. This study explored how reward learning and its flexibility are controlled in a pathway-specific and DA receptor-dependent manner. We used two techniques (i) reversible neurotransmission blocking (RNB), in which transmission of the direct (D-RNB) or the indirect pathway (I-RNB) in the NAc on both sides of the hemispheres was selectively blocked by transmission-blocking tetanus toxin; and (ii) asymmetric RNB, in which transmission of the direct (D-aRNB) or the indirect pathway (I-aRNB) was unilaterally blocked by RNB techniques and the intact side of the NAc was infused with DA agonists or antagonists. Reward-based learning was assessed by measuring goal-directed learning ability based on visual cue tasks (VCTs) or response-direction tasks (RDTs). Learning flexibility was then tested by switching from a previously learned VCT to a new VCT or RDT. D-RNB mice and D1 receptor antagonist-treated D-aRNB mice showed severe impairments in learning acquisition but normal flexibility to switch from a previously learned strategy. In contrast, I-RNB mice and D2 receptor agonist-treated I-aRNB mice showed normal learning acquisition but severe impairments not only in the flexibility to the learning switch but also in the subsequent acquisition of learning a new strategy. D1 and D2 receptors thus play distinct but cooperative roles in reward learning and its flexibility in a pathway-specific manner.


Asunto(s)
Agonistas de Dopamina/farmacología , Aprendizaje/efectos de los fármacos , Neurotoxinas/farmacología , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/metabolismo , Transmisión Sináptica/efectos de los fármacos , Toxina Tetánica/farmacología , Animales , Aprendizaje/fisiología , Ratones , Transmisión Sináptica/fisiología
10.
PLoS One ; 7(12): e53024, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300850

RESUMEN

In the mammalian cortex, the dorsal telencephalon exhibits a characteristic stratified structure. We previously reported that three-dimensional (3D) culture of mouse ES cells (mESCs) can efficiently generate cortical neuroepithelium (NE) and layer-specific cortical neurons. However, the cortical NE generated in this mESC culture was structurally unstable and broke into small neural rosettes by culture day 7, suggesting that some factors for reinforcing the structural integrity were missing. Here we report substantial supporting effects of the extracellular matrix (ECM) protein laminin on the continuous formation of properly polarized cortical NE in floating aggregate culture of mESCs. The addition of purified laminin and entactin (a laminin-associated protein), even at low concentrations, stabilized the formation of continuous cortical NE as well as the maintenance of basement membrane and prevented rosette formation. Treatment with the neutralizing ß1-integrin antibody impaired the continuous NE formation. The stabilized cortical NE exhibited typical interkinetic nuclear migration of cortical progenitors, as seen in the embryonic cortex. The laminin-treated cortical NE maintained a continuous structure even on culture days 12 and 15, and contained ventricular, basal-progenitor, cortical-plate and Cajal-Retzius cell layers. The cortical NE in this culture was flanked by cortical hem-like tissue. Furthermore, when Shh was added, ventral telencephalic structures such as lateral ganglionic eminence-like tissue formed in the region adjacent to the cortical NE. Thus, our results indicate that laminin-entactin ECM promotes the formation of structurally stable telencephalic tissues in 3D ESC culture, and supports the morphogenetic recapitulation of cortical development.


Asunto(s)
Corteza Cerebral/citología , Células Madre Embrionarias/citología , Matriz Extracelular/metabolismo , Laminina/metabolismo , Neuronas/citología , Animales , Membrana Basal/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Células Madre Embrionarias/metabolismo , Ratones , Neuronas/metabolismo
11.
J Neurosci ; 31(5): 1919-33, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21289201

RESUMEN

During early telencephalic development, the major portion of the ventral telencephalic (subpallial) region becomes subdivided into three regions, the lateral (LGE), medial (MGE), and caudal (CGE) ganglionic eminences. In this study, we systematically recapitulated subpallial patterning in mouse embryonic stem cell (ESC) cultures and investigated temporal and combinatory actions of patterning signals. In serum-free floating culture, the dorsal-ventral specification of ESC-derived telencephalic neuroectoderm is dose-dependently directed by Sonic hedgehog (Shh) signaling. Early Shh treatment, even before the expression onset of Foxg1 (also Bf1; earliest marker of the telencephalic lineage), is critical for efficiently generating LGE progenitors, and continuous Shh signaling until day 9 is necessary to commit these cells to the LGE lineage. When induced under these conditions and purified by fluorescence-activated cell sorter, telencephalic cells efficiently differentiated into Nolz1(+)/Ctip2(+) LGE neuronal precursors and subsequently, both in culture and after in vivo grafting, into DARPP32(+) medium-sized spiny neurons. Purified telencephalic progenitors treated with high doses of the Hedgehog (Hh) agonist SAG (Smoothened agonist) differentiated into MGE- and CGE-like tissues. Interestingly, in addition to strong Hh signaling, the efficient specification of MGE cells requires Fgf8 signaling but is inhibited by treatment with Fgf15/19. In contrast, CGE differentiation is promoted by Fgf15/19 but suppressed by Fgf8, suggesting that specific Fgf signals play different, critical roles in the positional specification of ESC-derived ventral subpallial tissues. We discuss a model of the antagonistic Fgf8 and Fgf15/19 signaling in rostral-caudal subpallial patterning and compare it with the roles of these molecules in cortical patterning.


Asunto(s)
Células Madre Embrionarias/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Telencéfalo/crecimiento & desarrollo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Ciclohexilaminas/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Telencéfalo/citología , Telencéfalo/efectos de los fármacos , Telencéfalo/metabolismo , Tiofenos/farmacología , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA