Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 36(1): 19-39, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37795691

RESUMEN

NAKED ENDOSPERM1 (NKD1), NKD2, and OPAQUE2 (O2) are transcription factors important for cell patterning and nutrient storage in maize (Zea mays) endosperm. To study the complex regulatory interrelationships among these 3 factors in coregulating gene networks, we developed a set of nkd1, nkd2, and o2 homozygous lines, including all combinations of mutant and wild-type genes. Among the 8 genotypes tested, we observed diverse phenotypes and gene interactions affecting cell patterning, starch content, and storage proteins. From ∼8 to ∼16 d after pollination, maize endosperm undergoes a transition from cellular development to nutrient accumulation for grain filling. Gene network analysis showed that NKD1, NKD2, and O2 dynamically regulate a hierarchical gene network during this period, directing cellular development early and then transitioning to constrain cellular development while promoting the biosynthesis and storage of starch, proteins, and lipids. Genetic interactions regulating this network are also dynamic. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) showed that O2 influences the global regulatory landscape, decreasing NKD1 and NKD2 target site accessibility, while NKD1 and NKD2 increase O2 target site accessibility. In summary, interactions of NKD1, NKD2, and O2 dynamically affect the hierarchical gene network and regulatory landscape during the transition from cellular development to grain filling in maize endosperm.


Asunto(s)
Endospermo , Proteínas de Plantas , Endospermo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Redes Reguladoras de Genes/genética , Almidón/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Front Plant Sci ; 13: 852082, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330868

RESUMEN

Maize endosperm plays important roles in human diet, animal feed and industrial applications. Knowing the mechanisms that regulate maize endosperm development could facilitate the improvement of grain quality. This review provides a detailed account of maize endosperm development at the cellular and histological levels. It features the stages of early development as well as developmental patterns of the various individual tissues and cell types. It then covers molecular genetics, gene expression networks, and current understanding of key regulators as they affect the development of each tissue. The article then briefly considers key changes that have occurred in endosperm development during maize domestication. Finally, it considers prospects for how knowledge of the regulation of endosperm development could be utilized to enhance maize grain quality to improve agronomic performance, nutrition and economic value.

3.
Am J Bot ; 101(8): 1259-74, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25104551

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• METHODS: The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• KEY RESULTS: Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• CONCLUSIONS: Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize.


Asunto(s)
Diferenciación Celular , Endospermo/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Endospermo/anatomía & histología , Endospermo/citología , Fertilización , Células Vegetales , Polinización , Especificidad de la Especie , Zea mays/anatomía & histología , Zea mays/citología
4.
Proc Natl Acad Sci U S A ; 111(21): 7582-7, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821765

RESUMEN

Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality.


Asunto(s)
Endospermo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Zea mays/genética , Biología Computacional , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Factores de Tiempo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...