Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Dalton Trans ; 53(4): 1482-1491, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38131298

A series of monocapped cobalt(II) tris-pyrazoloximates was obtained through the template condensation of the corresponding pyrazoloxime, phenylboronic acid and a suitable cobalt(II) halogenide. Comparing 3-acetylpyrazoloxime versus its methine-containing homolog, the former produced cobalt(II) clathrochelates in substantially higher yields due to the electron donating effect of the methyl substituent, increasing the N-donor ability of its oxime group. Their less N-donor analog with the electron acceptor trifluoromethyl group did not form cobalt(II) complexes of this type. In all their solvent-free and solvent-containing crystals, the encapsulated cobalt(II) ion adopted a high-spin state, as gauged by the Co-N bond lengths of 2.112(4)-2.188(9) Å, and was located almost in the center of its CoN6-coordination polyhedron. Their CoN6-polyhedra had an almost ideal trigonal-prismatic (TP) geometry with distortion angles φ below 4°. This TP-like geometry was assisted by hydrogen bonding between their NH groups and the apical counterion. The absence of methyl groups makes them close to an ideal TP. In contrast, stronger N-H⋯Cl hydrogen bonds occurred in the methyl-containing complex, while the Co-N bond lengths stayed the same at 2.144(2) Å on average. In its solvates with benzene, chloroform and acetone, there is a clear tendency for φ to decrease from 2.7(3)° to 0.47(13)°. The comparable effects of the ribbed methyl substituents, the cross-linking counterion and the lattice solvent on their molecular geometry were observed; the larger the distortions from an ideal TP geometry, the stronger the hydrogen bonds to the corresponding apical halogenide anion. The analysis of the experimental AC- and DC-magnetometry data for their fine-crystalline samples suggests that the passing from the derivative of the methyl-substituted synthon to that of its methine-containing homolog caused a substantial decrease in the magnetic susceptibility value χT and an increase in the QTM contribution to the magnetic relaxation. The effect of a cross-linking halogenide counteranion on the Orbach remagnetization barrier is greater than that of the solvatomorphism of their crystals.

2.
Org Biomol Chem ; 21(45): 9091-9100, 2023 11 22.
Article En | MEDLINE | ID: mdl-37947030

Defluorination of the readily available 21,21,21-trifluorothevinone (7) with Mg + Me3SiCl allows the preparation of 21,21-difluorothevinone (10) and 21-fluorothevinone (11), which can be used as the starting compounds for syntheses of 21,21-difluoro- and 21-fluoro-substituted relatives of thevinols and orvinols. Taken together, thevinols and orvinols are well known to constitute a family of the highly potent 4,5α-epoxy-18,19-endo-(etheno/ethano)morphinan-type opioid receptor ligands. Alternatively, 10 and 18,19-dihydro-21,21-difluorothevinone (13) have been synthesized by the addition of Me3SiCHF2 to the carbonyl function of thevinal (12) and dihydrothevinal (18) followed by oxidation of the intermediate C(21)-difluorinated secondary alcohols. 21,21-Difluorothevinols were obtained both by the addition of RMgX or RLi to the 21,21-difluoroketones and by the addition of Me3SiCHF2 to the carbonyl function of the non-fluorinated 18,19-endo-(etheno/ethano)morphinan ketones. In general, these addition reactions have been shown to result in mixtures of the C(21)-epimeric alcohols. However, in some cases, the reactions proceeded with high stereoselectivity allowing the isolation of one of the epimeric alcohols by conventional crystallization. Preparations of the 21,21-difluorothevinols bearing an allyl, cyclopropylmethyl, or cyclobutylmethyl group at the N(17) nitrogen are also reported.


Morphinans , Receptors, Opioid , Morphinans/chemistry , Oxidation-Reduction , Ligands , Protein Binding , Receptors, Opioid, mu
3.
Molecules ; 28(8)2023 Apr 11.
Article En | MEDLINE | ID: mdl-37110601

Acid-base characteristics (acidity, pKa, and hydricity, ΔG°H- or kH-) of metal hydride complexes could be a helpful value for forecasting their activity in various catalytic reactions. Polarity of the M-H bond may change radically at the stage of formation of a non-covalent adduct with an acidic/basic partner. This stage is responsible for subsequent hydrogen ion (hydride or proton) transfer. Here, the reaction of tricarbonyl manganese hydrides mer,trans-[L2Mn(CO)3H] (1; L = P(OPh)3, 2; L = PPh3) and fac-[(L-L')Mn(CO)3H] (3, L-L' = Ph2PCH2PPh2 (dppm); 4, L-L' = Ph2PCH2-NHC) with organic bases and Lewis acid (B(C6F5)3) was explored by spectroscopic (IR, NMR) methods to find the conditions for the Mn-H bond repolarization. Complex 1, bearing phosphite ligands, features acidic properties (pKa 21.3) but can serve also as a hydride donor (ΔG≠298K = 19.8 kcal/mol). Complex 3 with pronounced hydride character can be deprotonated with KHMDS at the CH2-bridge position in THF and at the Mn-H position in MeCN. The kinetic hydricity of manganese complexes 1-4 increases in the order mer,trans-[(P(OPh)3)2Mn(CO)3H] (1) < mer,trans-[(PPh3)2Mn(CO)3H] (2) ≈ fac-[(dppm)Mn(CO)3H] (3) < fac-[(Ph2PCH2NHC)Mn(CO)3H] (4), corresponding to the gain of the phosphorus ligand electron-donor properties.

4.
Org Biomol Chem ; 21(7): 1440-1449, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36651056

A method is reported to control the stereoselectivity at C(20) in the syntheses of 20-R-21,21,21-trifluorothevinols (12), the opioid ligands incorporating fluorine atoms within the pharmacophore associated with the surroundings of the C(20) carbon atom. The C(20)-alcohols 12 can be prepared either by reaction of 21,21,21-trifluorothevinone (9) with RM (R = alkyl; M = Li, MgX) or by reaction of thevinone (2) and related non-fluorinated ketones with CF3SiMe3. In general, alcohols 12 were formed as mixtures of the C(20)-epimers, with the major epimers of the alcohols obtained from the aforementioned reactions exploiting RLi vs. CF3SiMe3 with opposite absolute configurations at C(20). Some individual C(20)-epimers of the fluorinated alcohols 12 were isolated from the reaction mixtures in pure form by trivial crystallization. The reactions of the ketones with RMgX (R ≠ Me) and RLi (R = tertiary or secondary alkyl) resulted in the reduction of the carbonyl function to produce the secondary alcohols 11a,b rather than the tertiary alcohols 12. The additives of the salts were found to affect the composition of the products in the reactions of 9 with alkyl organomagnesium and organolithium reagents.

...