Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717910

RESUMEN

Warm mix asphalt (WMA) technology, taking advantage of reclaimed asphalt pavements, has gained increasing attention from the scientific community. The determination of technical specifications of such a type of asphalt concrete is crucial for pavement design, in which the asphalt concrete dynamic modulus (E*) of elasticity is amongst the most critical parameters. However, the latter could only be determined by complicated, costly, and time-consuming experiments. This paper presents an alternative cost-effective approach to determine the dynamic elastic modulus (E*) of WMA based on various machine learning-based algorithms, namely the artificial neural network (ANN), support vector machine (SVM), Gaussian process regression (GPR), and ensemble boosted trees (Boosted). For this, a total of 300 samples were fabricated by warm mix asphalt technology. The mixtures were prepared with 0%, 20%, 30%, 40%, and 50% content of reclaimed asphalt pavement (RAP) and modified bitumen binder using Sasobit and Zycotherm additives. The dynamic elastic modulus tests were conducted by varying the temperature from 10 °C to 50 °C at different frequencies from 0.1 Hz to 25 Hz. Various common quantitative indications, such as root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (R) were used to validate and compare the prediction capability of different models. The results showed that machine learning models could accurately predict the dynamic elastic modulus of WMA using up to 50% RAP and fabricated by warm mix asphalt technology. Out of these models, the Boosted algorithm (R = 0.9956) was found as the best predictor compared with those obtained by ANN-LMN (R = 0.9954), SVM (R = 0.9654), and GPR (R= 0.9865). Thus, it could be concluded that Boosted is a promising cost-effective tool for the prediction of the dynamic elastic modulus (E*) of WMA. This study might help in reducing the cost of laboratory experiments for the determination of the dynamic modulus (E*).

2.
Materials (Basel) ; 13(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121104

RESUMEN

Development of Foamed Concrete (FC) and incessant increases in fabrication technology have paved the way for many promising civil engineering applications. Nevertheless, the design of FC requires a large number of experiments to determine the appropriate Compressive Strength (CS). Employment of machine learning algorithms to take advantage of the existing experiments database has been attempted, but model performance can still be improved. In this study, the performance of an Artificial Neural Network (ANN) was fully analyzed to predict the 28 days CS of FC. Monte Carlo simulations (MCS) were used to statistically analyze the convergence of the modeled results under the effect of random sampling strategies and the network structures selected. Various statistical measures such as Coefficient of Determination (R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) were used for validation of model performance. The results show that ANN is a highly efficient predictor of the CS of FC, achieving a maximum R2 value of 0.976 on the training part and an R2 of 0.972 on the testing part, using the optimized C-ANN-[3,4,5,1] structure, which compares with previous published studies. In addition, a sensitivity analysis using Partial Dependence Plots (PDP) over 1000 MCS was also performed to interpret the relationship between the input parameters and 28 days CS of FC. Dry density was found as the variable with the highest impact to predict the CS of FC. The results presented could facilitate and enhance the use of C-ANN in other civil engineering-related problems.

3.
Sci Total Environ ; 679: 172-184, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31082591

RESUMEN

In this study, we developed Different Artificial Intelligence (AI) models namely Artificial Neural Network (ANN), Adaptive Network based Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) for the prediction of Compression Coefficient of soil (Cc) which is one of the most important geotechnical parameters. A Monte Carlo approach was used for the sensitivity analysis of the AI models and input parameters. For the construction and validation of the models, 189 soft clayey soil samples were analyzed. In the models study, 13 input parameters: depth of sample, bulk density, plasticity index, moisture content, clay content, specific gravity, void ratio, liquid limit, dry density, porosity, plastic limit, degree of saturation, and liquidity index were used to obtain one output parameter "Cc". Validation of the models was done using statistical methods such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of determination (R2). Results of the model validation indicate that though performance of all the three models is good but SVM model is the best in the prediction of Cc. The Monte Carlo method based sensitivity analysis results show that out of the 13 input parameters considered for the models study, four parameters namely clay, degree of saturation, specific gravity and depth of sample are the most relevant in the prediction of Cc, and other parameters (bulk density, dry density, void ratio and porosity) are the most insignificant parameters for the prediction of Cc. Removal of these insignificant parameters helped to reduce the dimension of the input space and also model running time, and improved significantly the performance of the AI models. The results of this study might help in selecting the suitable AI models and input parameters for better and quick prediction of the Cc of soil.

4.
Materials (Basel) ; 12(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934566

RESUMEN

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model's performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R²). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R² = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R² = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...