Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255974

RESUMEN

The majority of the human proteome is subjected to N-terminal (Nt) acetylation catalysed by N-terminal acetyltransferases (NATs). The NatA complex is composed of two core subunits-the catalytic subunit NAA10 and the ribosomal anchor NAA15. Furthermore, NAA10 may also have catalytic and non-catalytic roles independent of NatA. Several inherited and de novo NAA10 variants have been associated with genetic disease in humans. In this study, we present a functional analysis of two de novo NAA10 variants, c.29A>G p.(D10G) and c.32T>G p.(L11R), previously identified in a male and a female, respectively. Both of these neighbouring amino acids are highly conserved in NAA10. Immunoprecipitation experiments revealed that both variants hamper complex formation with NAA15 and are thus likely to impair NatA-mediated Nt-acetylation in vivo. Despite their common impact on NatA formation, in vitro Nt-acetylation assays showed that the variants had opposing impacts on NAA10 catalytic activity. While NAA10 c.29A>G p.(D10G) exhibits normal intrinsic NatA activity and reduced monomeric NAA10 NAT activity, NAA10 c.32T>G p.(L11R) displays reduced NatA activity and normal NAA10 NAT activity. This study expands the scope of research into the functional consequences of NAA10 variants and underlines the importance of understanding the diverse cellular roles of NAA10 in disease mechanisms.


Asunto(s)
Mutación/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/genética , Acetilación , Secuencia de Aminoácidos , Biocatálisis , Células HeLa , Humanos , Acetiltransferasa A N-Terminal/química , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/química
2.
BMC Med Genet ; 21(1): 153, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698785

RESUMEN

BACKGROUND: NAA10 is the catalytic subunit of the major N-terminal acetyltransferase complex NatA which acetylates almost half the human proteome. Over the past decade, many NAA10 missense variants have been reported as causative of genetic disease in humans. Individuals harboring NAA10 variants often display variable degrees of intellectual disability (ID), developmental delay, and cardiac anomalies. Initially, carrier females appeared to be oligo- or asymptomatic with X-inactivation pattern skewed towards the wild type allele. However, recently it has been shown that NAA10 variants can cause syndromic or non-syndromic intellectual disability in females as well. The impact of specific NAA10 variants and the X-inactivation pattern on the individual phenotype in females remains to be elucidated. CASE PRESENTATION: Here we present a novel de novo NAA10 (NM_003491.3) c.[47A > C];[=] (p.[His16Pro];[=]) variant identified in a young female. The 10-year-old girl has severely delayed motor and language development, disturbed behavior with hyperactivity and restlessness, moderate dilatation of the ventricular system and extracerebral CSF spaces. Her blood leukocyte X-inactivation pattern was skewed (95/5) towards the maternally inherited X-chromosome. Our functional study indicates that NAA10 p.(H16P) impairs NatA complex formation and NatA catalytic activity, while monomeric NAA10 catalytic activity appears to be intact. Furthermore, cycloheximide experiments show that the NAA10 H16P variant does not affect the cellular stability of NAA10. DISCUSSION AND CONCLUSIONS: We demonstrate that NAA10 p.(His16Pro) causes a severe form of syndromic ID in a girl most likely through impaired NatA-mediated Nt-acetylation of cellular proteins. X-inactivation analyses showed a skewed X-inactivation pattern in DNA from blood of the patient with the maternally inherited allele being preferentially methylated/inactivated.


Asunto(s)
Discapacidad Intelectual/genética , Mutación/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Inactivación del Cromosoma X/genética , Secuencia de Aminoácidos , Biocatálisis , Niño , Cicloheximida/metabolismo , Femenino , Células HeLa , Heterocigoto , Humanos , Masculino , Acetiltransferasa A N-Terminal/química , Acetiltransferasa E N-Terminal/química , Linaje , Síndrome
3.
Toxins (Basel) ; 10(7)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970812

RESUMEN

Enterotoxigenic Escherichia coli (ETEC), which secretes the heat-stable toxin (ST) is among the four most important enteropathogens that cause moderate-to-severe diarrhea in children in low- and middle-income countries. ST is an intestinal molecular antagonist causing diarrhea and hence an attractive vaccine target. A non-toxic and safe ST vaccine should include one or more detoxifying mutations, and rigorous characterization of such mutants requires structurally intact peptides. To this end, we established a system for purification of ST and ST mutants by fusing the sequence encoding the mature ST peptide to the disulfide isomerase DsbC. A Tobacco Etch Virus protease cleavage site facilitates the proteolytic release of free ST with no additional residues. The purified ST peptides have the expected molecular masses, the correct number of disulfide bridges, and have biological activities and antigenic properties comparable to ST isolated from ETEC. We also show that free DsbC can assist in refolding denatured and misfolded ST in vitro. Finally, we demonstrate that the purification system can be used to produce ST mutants with an intact neutralizing epitope, that two single mutations, L9S and A14T, reduce toxicity more than 100-fold, and that the L9S/A14T double mutant has no measurable residual toxicity.


Asunto(s)
Toxinas Bacterianas , Enterotoxinas , Proteínas de Escherichia coli , Toxinas Bacterianas/genética , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigénica , Enterotoxinas/genética , Enterotoxinas/aislamiento & purificación , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Vacunas contra Escherichia coli , Mutación , Péptidos/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...