Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6683): 639-645, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330109

RESUMEN

Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling. The microstructural change because of the bifunctional additive results in uniform mechanical properties and simultaneous enhancement of both strength and ductility. We demonstrate how this alloy can be modified by a single component to address unfavorable microstructures, providing a pathway to achieve desirable mechanical characteristics directly from 3D printing.

2.
Acta Biomater ; 167: 593-607, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369266

RESUMEN

A zinc-nutrient element alloy (Zn-1.0Cu-0.5Ca) was developed into subcuticular absorbable staples (SAS) as a robust alternative to the commercially available poly(l-lactide-co-glycolide) (PLGA) SAS for the first time. The fixation properties of the Zn SAS were measured via pull-out tests and in-situ lap-shear pull-out test comparatively against the PLGA SAS. The Zn SAS exhibited fixation force of 18.9±0.2 N, which was over three times higher than that of PLGA SAS (5.5±0.1 N). The Zn SAS was used to close incision wounds in a SD rat model for biodegradability and biocompatibility characterisation at 1, 4 and 12 weeks. The Zn SAS showed uniform degradation behaviour after in vivo implantation at the average rate of 198±54, 112±28, and 70±24 µm/y after 1, 4, and 12 weeks, which reduced the fixation force to 16.8±1.1 N, 15.4±0.9 N, 12.7±0.7 N, respectively. These findings showed the potential of the Zn SAS for the closure of heavy loading and slowing healing tissues. The Zn SAS enabled successful closure and healing of the incision wound, similar to the PLGA staples. However, the slow long-term degradation rate of the Zn SAS may lead to unnecessary implant retention. In addition, the alloy SAS resulted in higher local foreign body responses due to their stiffness. Reducing the implant cross-section profile and applying low stiffness and a corrosion-accelerating coating are suggested as possible approaches to reduce post-service implant retention and improve the biocompatibility of the Zn SAS. STATEMENT OF SIGNIFICANCE: This work reports the fabrication of the first metallic subcuticular absorbable staples (SAS) made from ZnCuCa alloy for skin wound closure applications. The Zn-based SAS were characterised in vitro and in vivo (SD rat model) for biodegradability, fixation properties, biocompatibility and inflammatory responses, which were compared against the commercially available PLGA-based SAS. The Zn-based SAS provided a secure attachment of the full-thickness wounds on SD rats and allowed successful healing during the 12-week service period. In addition, the in vitro results showed that the Zn-based SAS provided more than three times higher fixation strength than the commercial PLGA, indicating the potential of the Zn-based SAS for load-bearing wound closure application.


Asunto(s)
Cicatrización de Heridas , Zinc , Animales , Ratas , Ratas Sprague-Dawley , Suturas , Aleaciones/farmacología , Implantes Absorbibles , Ensayo de Materiales
3.
ACS Biomater Sci Eng ; 9(5): 2301-2316, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37072291

RESUMEN

This work presents a study on the influence of biologically relevant ions on the corrosion of zinc (Zn) in physiological fluids. Electrochemical techniques were used to investigate the degradation of pure Zn exposed to different physiological electrolytes containing chlorides, carbonates, sulfates, and phosphates. The corrosion behavior of Zn in the solutions over a 7-day period was also assessed. SEM, EDS, and FTIR were used to analyze corrosion products. With respect to corrosion, the most aggressive ions are chlorides, which induce localized corrosion, while carbonates and phosphates reduce the corrosive attack of the chloride on Zn while inducing uniform corrosion. Sulfates reduce the corrosion rate by disrupting Zn's passive layer. The overall corrosion rate of Zn changed in each electrolyte depending on the nature of the solution and the corrosion product formed. These findings will be useful in predicting the in-service behavior of future biodegradable Zn medical implants.


Asunto(s)
Zinc , Cationes Bivalentes/química , Zinc/química , Corrosión , Electrólitos , Propiedades de Superficie , Espectroscopía Infrarroja por Transformada de Fourier
4.
Materials (Basel) ; 16(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837213

RESUMEN

Aluminium nitride (AlN) is an important technical ceramic with outstanding strength and thermal conductivity that has important applications for advanced heat sink materials and as a reinforcement for metal-based composites. In this study, we report a novel, straightforward and low-cost method to prepare AlN powder using a vacuum tube furnace for the direct nitridation of loose aluminium powder at low temperatures (down to 500 ∘C) under flowing high-purity nitrogen. Small amounts of magnesium powder (1 wt.%), combined with aluminium, promote nitridation. Here, we characterise the effects of time (up to 12 h) and temperature (490 to 560 ∘C) on nitridation with the aim to establish an effective regimen for the controlled synthesis of an aluminium nitride reinforcement powder for the production of metal matrix composites. The extent of nitridation and the morphology of the reaction products were assessed using scanning electron microscopy and X-ray diffraction analyses. AlN was detected for all nitriding temperatures ≥ 500 ∘C, with the highest yields of 80% to 85% obtained at 530 ∘C for times ≥ 1 h. At this temperature, nitridation proceeded rapidly, and there was extensive agglomeration of the reaction products making it difficult to reprocess into powder. At lower temperatures around 510 ∘C, a relatively high proportion of AlN was attained (>73% after 6 h) while retaining excellent friability so that it could be manually reprocessed to powder. The synthesised reinforcement consisted of micro- or nano-crystalline AlN comingled with metallic aluminium. The ratio of AlN and metallic aluminium can be readily controlled by varying the nitriding temperature. This provides a flexible and accessible method for the production of AlN-reinforcement powders suited to the production of metal matrix composites.

5.
ACS Biomater Sci Eng ; 9(3): 1261-1273, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36808972

RESUMEN

As a representative of the biodegradable iron (Fe)-manganese (Mn) alloys, Fe35Mn has been investigated as a promising biodegradable metal biomaterial for orthopedic applications. However, its slow degradation rate, though better than pure Fe, and poor bioactivity are concerns that retard its clinical applications. Akermanite (Ca2MgSi2O7, Ake) is a silicate-based bioceramic, showing desirable degradability and bioactivity for bone repair. In the present work, Fe35Mn/Ake composites were prepared via a powder metallurgy route. The effect of different contents of Ake (0, 10, 30, 50 vol %) on the microstructure, mechanical properties, degradation, and biocompatibility of the composites was investigated. The ceramic phases were found to be evenly distributed in the metal matrix. The Ake reacted with Fe35Mn and generated CaFeSiO4 during sintering. The addition of Ake increased the relative density of pure Fe35Mn from ∼90 to ∼94-97%. The compressive yield strength (CYS) and elastic modulus (Ec) increased with increasing Ake, with Fe35Mn/50Ake exhibiting the highest CYS of ∼403 MPa and Ec of ∼18 GPa. However, the ductility decreased at higher Ake concentrations (30 and 50%). Microhardness also showed an increasing trend with the addition of Ake. Electrochemical measurements indicated that higher concentrations of Ake (30 and 50%) could potentially increase the corrosion rate of Fe35Mn from ∼0.25 to ∼0.39 mm/year. However, all of the compositions tested did not show measurable weight loss after immersion in simulated body fluid (SBF) for 4 weeks, attributed to the use of prealloyed raw material, high sintered density of the fabricated composites, and the formation of a dense Ca-, P-, and O-rich layer on the surface. Human osteoblasts on Fe35Mn/Ake composites showed increasing viability with increasing Ake content, indicating improved in vitro biocompatibility. These preliminary results suggest that Fe35Mn/Ake can be a potential material for biodegradable bone implant applications, particularly Fe35Mn/30Ake, if the slow corrosion of the composite can be addressed.


Asunto(s)
Materiales Biocompatibles , Cerámica , Humanos , Ensayo de Materiales , Cerámica/química , Aleaciones
6.
J Mech Behav Biomed Mater ; 138: 105658, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610283

RESUMEN

This work reports the first in vitro study on the in-situ biodegradation behaviour and the evolution of fixation strength of Zn-Cu alloy wires in a simulated sternum closure environment. Zn-Cu wires were used to reapproximate the partial bisected sternum models, and their fixation effect was compared with traditional surgical grade 316 L stainless steel (SS) wires in terms of fixation rigidity, critical load, first/ultimate failure characteristics. The metal sutures were then immersed in Hank's balanced salt solution for 12 weeks immersion period, and their corrosion behaviours assessed. Zn-Cu wires showed similar fixation rigidity at 70.89 ± 6.97 N/mm as SS, but the critical load, first failure and ultimate failure characteristics were inferior to SS. The key challenges that limited the fixation effect of the Zn-Cu wires were poor mechanical strength, short elastic region, and strain softening behaviours, which resulted in poor load-bearing capabilities and reduced the knot security of the sutures. The in-situ biodegradation of the Zn-Cu suture was accompanied by the early onset of localised corrosion within the twisted knot and the section located next to the incision line. Crevice corrosion and strain-induced corrosion were the dominant mechanisms in the observed localised corrosion. The localised corrosion on the Zn-Cu sutures did not lead to a significant shift in fixation rigidity, critical load and the first failure characteristics. The findings suggest that the Zn-based biodegradable metallic wires could be a promising sternum closure suture material once the limitations in mechanical characteristics are addressed.


Asunto(s)
Esternón , Técnicas de Sutura , Esternón/cirugía , Hilos Ortopédicos , Suturas , Acero Inoxidable , Aleaciones/farmacología , Corrosión , Zinc , Ensayo de Materiales
7.
J Biomed Mater Res B Appl Biomater ; 111(5): 1048-1058, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36544251

RESUMEN

Due to the poor tribological properties of titanium (Ti) and its alloy Ti6Al4V (commonly used for ventricular assist devices manufacturing), diamond-like carbon (DLC) films with excellent anti-wear properties are pursued to improve the wear resistance of Ti and its alloys. Considering the effect of temperature on magnets inside pump impellers and workpiece deformation, DLC films are preferred to be prepared under low temperature. In this study, DLC films were prepared on Ti6Al4V alloys by periodic and continuous processes, and the corresponding maximum deposition temperature was 85 and 154°C, respectively. The periodic DLC films exhibited the feature of columnar structure, and the surface hillocks were less uniform than that of continuous DLC films. The periodic DLC films possessed more sp3 -bonded structures, and the accessorial sp3 -bonding mainly existed in the form of CH. Compared to continuous DLC films, the periodic DLC films had lower residual stress and better adhesion with Ti6Al4V substrates. Both DLC films could effectively reduce the friction coefficient and wear rate of Ti6Al4V alloys both in air and fetal bovine serum (FBS), and the periodic DLC films exhibited superior anti-wear properties to that of continuous DLC films in FBS. Haemocompatibility evaluation revealed that both DLC films presented similar levels of more human platelet adhesion and activation as compared with that of bare Ti6Al4V. However, both DLC films significantly prolonged plasma clotting time in comparison to bare Ti6Al4V. This study demonstrates the potential of low-temperature DLC films as wear-resistant surface modification for VADs.


Asunto(s)
Carbono , Corazón Auxiliar , Humanos , Ensayo de Materiales , Temperatura , Carbono/química , Propiedades de Superficie , Aleaciones
8.
Bioact Mater ; 22: 291-311, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36263099

RESUMEN

Flexible piezoelectrics realise the conversion between mechanical movements and electrical power by conformally attaching onto curvilinear surfaces, which are promising for energy harvesting of biomedical devices due to their sustainable body movements and/or deformations. Developing secondary functions of flexible piezoelectric energy harvesters is becoming increasingly significant in recent years via aiming at issues that cannot be addressed or mitigated by merely increasing piezoelectric efficiencies. These issues include loose interfacial contact and pucker generation by stretching, power shortage or instability induced by inadequate mechanical energy, and premature function degeneration or failure caused by fatigue fracture after cyclic deformations. Herein, the expedient secondary functions of flexible piezoelectrics to mitigate above issues are reviewed, including stretchability, hybrid energy harvesting, and self-healing. Efforts have been devoted to understanding the state-of-the-art strategies and their mechanisms of achieving secondary functions based on piezoelectric fundamentals. The link between structural characteristic and function performance is unravelled by providing insights into carefully selected progresses. The remaining challenges of developing secondary functions are proposed in the end with corresponding outlooks. The current work hopes to help and inspire future research in this promising field focusing on developing the secondary functions of flexible piezoelectric energy harvesters.

9.
Ultrason Sonochem ; 89: 106151, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36067645

RESUMEN

A refined, equiaxed grain structure and the formation of finer primary intermetallic phases are some of the notable benefits of ultrasonic processing of liquid/solidifying melts. Ultrasonic treatment (UST) has been widely explored in Al and Mg-based alloys due to its operational versatility and scalability. During UST, the refinement of grain and primary intermetallic phases occurs via cavitation-induced fragmentation mechanisms. In addition, UST improves the efficiency (activation of particles) of the conventional grain refinement process when potent particles are added through master alloys. Though the UST's ability to produce refined as-cast structures is well recognized, the understanding of the refinement mechanisms is still debated and unresolved. Significant efforts have been devoted to understanding these mechanisms through the use of sophisticated techniques such as in-situ/ real-time observation, lab-scale and commercial-scale casting processes. All these studies aim to demonstrate the significance of cavitation, fragmentation modes, and alloy chemistry in microstructure refinement. Although the physical effects of cavitation and acoustic streaming (fluid flow) are primary factors influencing the refinement, the dominant grain refinement mechanisms are affected by several solidification variables and casting conditions. Some of these include melt volume, solute, cooling rate, potent particles, grain growth (equiaxed, columnar or dendritic), and the cold zones of the casting where the onset of nucleation occurs. This review aims to provide a better insight into solidification variables emphasizing the importance of cold zones in generating fine structures for small- and large-volume (direct chill) castings. Another important highlight of this review is to present the relatively less explored mechanism of (acoustic) vibration-induced crystallization and discuss the role of cavitation in achieving a refined ingot structure.

10.
Nat Commun ; 13(1): 4660, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945248

RESUMEN

Additive manufacturing (AM) creates digitally designed parts by successive addition of material. However, owing to intrinsic thermal cycling, metallic parts produced by AM almost inevitably suffer from spatially dependent heterogeneities in phases and mechanical properties, which may cause unpredictable service failures. Here, we demonstrate a synergistic alloy design approach to overcome this issue in titanium alloys manufactured by laser powder bed fusion. The key to our approach is in-situ alloying of Ti-6Al-4V (in weight per cent) with combined additions of pure titanium powders and iron oxide (Fe2O3) nanoparticles. This not only enables in-situ elimination of phase heterogeneity through diluting V concentration whilst introducing small amounts of Fe, but also compensates for the strength loss via oxygen solute strengthening. Our alloys achieve spatially uniform microstructures and mechanical properties which are superior to those of Ti-6Al-4V. This study may help to guide the design of other alloys, which not only overcomes the challenge inherent to the AM processes, but also takes advantage of the alloy design opportunities offered by AM.

11.
Adv Mater ; 34(41): e2204508, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36016514

RESUMEN

In this study, flexible thermoelectric coolers (FTECs) are used to develop an alternative personalized cooling technology to achieve a large temperature drop of 10 °C and cooling capacity of 256 W m-2 . Such an excellent cooling performance is attributed to the innovative design of the quadra-layered Ag2 Se/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate structure in FTECs and the induced air vortices by the vortex generator attached to the hot surface of the device. The applied pulse-width modulation technique guarantees human body comfort at inconsistent ambient temperature by modulating the duty ratio of the power source, which also saves 35% of the power consumption. As a result, the as-prepared FTECs only consume 68.5 W so as to maintain a comfortable skin temperature (32 ± 0.5 °C) when the ambient temperature is at 31 °C. This technology provides a reliable and adjustable solution for personalized cooling in environments where comfortable temperatures are exceeded.

12.
ACS Appl Mater Interfaces ; 14(19): 22554-22569, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35533291

RESUMEN

Zinc (Zn) has recently been identified as an auspicious biodegradable metal for medical implants and devices due to its tunable mechanical properties and good biocompatibility. However, the slow corrosion rate of Zn in a physiological environment does not meet the requirements for biodegradable implants, hindering its clinical translation. The present study aimed to accelerate the corrosion rate of pure Zn by utilizing acid etching to roughen the surface and increase the substrate surface area. The effects of acid etching on surface morphology, surface roughness, tensile properties, hardness, electrochemical corrosion and degradation behavior, cytocompatibility, direct cell attachment, and biofilm formation were investigated. Interestingly, acid-treated Zn showed an exceptionally high rate of corrosion (∼226-125 µm/year) compared to untreated Zn (∼62 µm/year), attributed to the increased surface roughness (Ra ∼ 1.12 µm) of acid-etched samples. Immersion tests in Hank's solution revealed that acid etching accelerated the degradation rate of Zn samples. In vitro, MC3T3-E1 cell lines in 50 and 25% conditioned media extracts of treated samples showed good cytocompatibility. Reduced bacterial adhesion, biofilm formation, and dispersion were observed for Staphylococci aureus biofilms cultured on acid-etched pure Zn substrates. These results suggest that the surface modification of biodegradable pure Zn metals by acid etching markedly increases the translation potential of zinc for various biomedical applications.


Asunto(s)
Aleaciones , Zinc , Implantes Absorbibles , Aleaciones/química , Antibacterianos/farmacología , Materiales Biocompatibles , Corrosión , Ensayo de Materiales , Zinc/química
13.
Biomater Sci ; 10(13): 3371-3392, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35551346

RESUMEN

Pelvic organ prolapse is the herniation of surrounding tissue and organs into the vagina and/or rectum and is a result of the weakening of pelvic floor muscles, connective tissue, and fascia. It is widely accepted that 50% of women will develop prolapse, with the prevalence increasing with age, and up to 10-20% of those seek evaluation for their condition. Suture repairs of pelvic floor defects are associated with a high failure rate, and permanent meshes were introduced to reduce the recurrence rate. The meshes were successful in reducing the rate of recurrence but were also associated with a higher rate of complications (pain or erosion into surrounding organs) and as such have been banned in many countries. New materials that are able to provide tissue support without complications are urgently required. A promising new material may be a biodegradable metal, which provides support during healing and subsequently completely degrades. We summarise pelvic mesh usage, and evaluate the use of a biodegradable metal, which has advantages of biocompatibility, antibacterial properties, and mechanical properties. The remaining challenges are discussed as follows: (1) degradation rate, (2) stiffness, (3) corrosion fatigue, (4) zinc aging, and (5) MRI artifacts.


Asunto(s)
Prolapso de Órgano Pélvico , Mallas Quirúrgicas , Femenino , Humanos , Diafragma Pélvico/cirugía , Prolapso de Órgano Pélvico/cirugía , Vagina/cirugía
14.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268983

RESUMEN

Ti is widely used as a material for orthopedic implants. As rapid and effective osseointegration is a key factor for the successful application of implants, biologically inert Ti materials start to show inherent limitations, such as poor surface cell adhesion, bioactivity, and bone-growth-inducing capabilities. Surface modification can be an efficient and effective approach to addressing the biocompatibility, mechanical, and functionality issues of the various Ti implant materials. In this study, we have overviewed more than 140 papers to summarize the recent progress in the surface modification of Ti implants by physical and/or chemical modification approaches, aiming at optimizing their wear resistance, biocompatibility, and antimicrobial properties. As an advanced manufacturing technology for Ti and Ti alloys, additive manufacturing was particularly addressed in this review. We also provide an outlook for future research directions in this field as a contribution to the development of advanced Ti implants for biomedical applications.

15.
Bioact Mater ; 12: 85-96, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35087965

RESUMEN

A magnesium alloy containing essential, non-toxic, biodegradable elements such as Ca and Zn has been fabricated using a novel twin-roll casting process (TRC). Microstructure, mechanical properties, in vivo corrosion and biocompatibility have been assessed and compared to the properties of the rare earth (RE) element containing WE43 alloy. TRC Mg-0.5 wt% Zn- 0.5 wt% Ca exhibited fine grains with an average grain size ranging from 70 to 150 µm. Mechanical properties of a TRC Mg-0.5Zn-0.5Ca alloy showed an ultimate tensile strength of 220 MPa and ductility of 9.3%. The TRC Mg-0.5Zn-0.5Ca alloy showed a degradation rate of 0.51 ± 0.07 mm/y similar to that of the WE43 alloy (0.47 ± 0.09 mm/y) in the rat model after 1 week of implantation. By week 4 the biodegradation rates of both alloys studied were lowered and stabilized with fewer gas pockets around the implant. The histological analysis shows that both WE43 and TRC Mg-0.5Zn-0.5Ca alloy triggered comparable tissue healing responses at respective times of implantation. The presence of more organized scarring tissue around the TRC Mg-0.5Zn-0.5Ca alloys suggests that the biodegradation of the RE-free alloy may be more conducive to the tissue proliferation and remodelling process.

16.
ASAIO J ; 68(5): 623-632, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324447

RESUMEN

Rotary ventricular assist devices (VADs) are frequently used to provide mechanical circulatory support to patients suffering from end-stage heart failure. Therefore, these devices and especially their pump impeller and housing components have stringent requirements on wear resistance and hemocompatibility. Various surface coatings have been investigated to improve the wear resistance or hemocompatibility of these devices. The aim of the present systematic review was to build a comprehensive understanding of these coatings and provide potential future research directions. A Boolean search for peer-reviewed studies was conducted in online databases (Web of Science, Scopus, PubMed, and ScienceDirect), and a preferred reporting items for systematic reviews and meta-analyses (PRISMA) process was followed for selecting relevant papers for analysis. A total of 45 of 527 publications were included for analysis. Eighteen coatings were reported to improve wear resistance or hemocompatibility of rotary VADs with the most common coatings being diamond-like carbon (DLC), 2-methacryloyloxyethyl phosphorylcholine (MPC), and heparin. Ninety-three percent of studies focused on hemocompatibility, whereas only 4% of studies focused on wear properties. Thirteen percent of studies investigated durability. This review provides readers with a systematic catalogue and critical review of surface coatings for rotary VADs. The review has identified that more comprehensive studies especially investigations on wear properties and durability are needed in future work.


Asunto(s)
Corazón Auxiliar , Humanos
17.
Biomaterials ; 280: 121301, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922270

RESUMEN

The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.


Asunto(s)
Aleaciones , Zinc , Implantes Absorbibles , Aleaciones/uso terapéutico , Materiales Biocompatibles/uso terapéutico , Magnesio , Ensayo de Materiales , Nutrientes
18.
Biomaterials ; 279: 121215, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34736144

RESUMEN

Shape memory alloys (SMAs) have a wide range of potential novel medical applications due to their superelastic properties and ability to restore and retain a 'memorised' shape. However, most SMAs are permanent and do not degrade in the body when used in implantable devices. The use of non-degrading metals may lead to the requirement for secondary removal surgery and this in turn may introduce both short and long-term health risks, or additional waste disposal requirements. Biodegradable SMAs can effectively eliminate these issues by gradually degrading inside the human body while providing the necessary support for healing purposes, therefore significantly alleviating patient discomfort and improving healing efficiency. This paper reviews the current progress in biodegradable SMAs from the perspective of biodegradability, mechanical properties, and biocompatibility. By providing insights into the status of SMAs and biodegradation mechanisms, the prospects for Mg- and Fe-based biodegradable SMAs to advance biodegradable SMA-based medical devices are explored. Finally, the remaining challenges and potential solutions in the biodegradable SMAs area are discussed, providing suggestions and research frameworks for future studies on this topic.


Asunto(s)
Aleaciones , Aleaciones con Memoria de Forma , Materiales Biocompatibles , Humanos , Metales , Prótesis e Implantes
19.
Adv Mater ; 33(40): e2102575, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34397118

RESUMEN

Owing to high intrinsic figure-of-merit implemented by multi-band valleytronics, GeTe-based thermoelectric materials are promising for medium-temperature applications. Transition metals are widely used as dopants for developing high-performance GeTe thermoelectric materials. Herein, relevant work is critically reviewed to establish a correlation among transition metal doping, electronic quality factor, and figure-of-merit of GeTe. From first-principle calculations, it is found that Ta, as an undiscovered dopant in GeTe, can effectively converge energy offset between light and heavy conduction band extrema to enhance effective mass at high temperature. Such manipulation is verified by the increased Seebeck coefficient of synthesized Ge1- x - y Tax Sby Te samples from 160 to 180 µV K-1 at 775 K upon doping Ta, then to 220 µV K-1 with further alloying Sb. Characterization using electron microscopy also reveals the unique herringbone structure associated with multi-scale lattice defects induced by Ta doping, which greatly hinder phonon propagation to decrease thermal conductivity. As a result, a figure-of-merit of ≈2.0 is attained in the Ge0.88 Ta0.02 Sb0.10 Te sample, reflecting a maximum heat-to-electricity efficiency up to 17.7% under a temperature gradient of 400 K. The rationalized beneficial effects stemming from Ta doping is an important observation that will stimulate new exploration toward high-performance GeTe-based thermoelectric materials.

20.
ACS Biomater Sci Eng ; 7(9): 4402-4419, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34436868

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is used in critical care to manage patients with severe respiratory and cardiac failure. ECMO brings blood from a critically ill patient into contact with a non-endothelialized circuit which can cause clotting and bleeding simultaneously in this population. Continuous systemic anticoagulation is needed during ECMO. The membrane oxygenator, which is a critical component of the extracorporeal circuit, is prone to significant thrombus formation due to its large surface area and areas of low, turbulent, and stagnant flow. Various surface coatings, including but not limited to heparin, albumin, poly(ethylene glycol), phosphorylcholine, and poly(2-methoxyethyl acrylate), have been developed to reduce thrombus formation during ECMO. The present work provides an up-to-date overview of anti-thrombogenic surface coatings for ECMO, including both commercial coatings and those under development. The focus is placed on the coatings being developed for oxygenators. Overall, zwitterionic polymer coatings, nitric oxide (NO)-releasing coatings, and lubricant-infused coatings have attracted more attention than other coatings and showed some improvement in in vitro and in vivo anti-thrombogenic effects. However, most studies lacked standard hemocompatibility assessment and comparison studies with current clinically used coatings, either heparin coatings or nonheparin coatings. Moreover, this review identifies that further investigation on the thrombo-resistance, stability and durability of coatings under rated flow conditions and the effects of coatings on the function of oxygenators (pressure drop and gas transfer) are needed. Therefore, extensive further development is required before these new coatings can be used in the clinic.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trombosis , Coagulación Sanguínea , Heparina , Humanos , Oxigenadores de Membrana , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...