Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35221402

RESUMEN

Research on proton-based imaging systems aims to improve treatment planning, internal anatomy visualization, and patient alignment for proton radiotherapy. The purpose of this study was to demonstrate a new proton radiography system design consisting of a monolithic plastic scintillator volume and two optical cameras for use with scanning proton pencil beams. Unlike the thin scintillating plates currently used for proton radiography, the plastic scintillator volume (20 × 20 × 20 cm3) captures a wider distribution of proton beam energy depositions and avoids proton-beam modulation. The proton imaging system's characteristics were tested using image uniformity (2.6% over a 5 × 5 cm2 area), stability (0.37%), and linearity (R2 = 1) studies. We used the light distribution produced within the plastic scintillator to generate proton radiographs via two different approaches: (a) integrating light by using a camera placed along the beam axis, and (b) capturing changes to the proton Bragg peak positions with a camera placed perpendicularly to the beam axis. The latter method was used to plot and evaluate relative shifts in percentage depth light (PDL) profiles of proton beams with and without a phantom in the beam path. A curvelet minimization algorithm used differences in PDL profiles to reconstruct and refine the phantom water-equivalent thickness (WET) map. Gammex phantoms were used to compare the proton radiographs generated by these two methods. The relative accuracies in calculating WET of the phantoms using the calibration-based beam-integration (and the PDL) methods were -0.18 ± 0.35% (-0.29 ± 3.11%), -0.11 ± 0.51% (-0.15 ± 2.64%), -2.94 ± 1.20% (-0.75 ± 6.11%), and -1.65 ± 0.35% (0.36 ± 3.93%) for solid water, adipose, cortical bone, and PMMA, respectively. Further exploration of this unique multicamera-based imaging system is warranted and could lead to clinical applications that improve treatment planning and patient alignment for proton radiotherapy.

2.
Artículo en Inglés | MEDLINE | ID: mdl-32194988

RESUMEN

With the expansion of proton radiotherapy for cancer treatments, it has become important to explore proton-based imaging technologies to increase the accuracy of proton treatment planning, alignment, and verification. The purpose of this study is to demonstrate the feasibility of using a volumetric liquid scintillator to generate proton radiographs at a clinically relevant energy (180 MeV) using an integrating detector approach. The volumetric scintillator detector is capable of capturing a wide distribution of residual proton beam energies from a single beam irradiation. It has the potential to reduce acquisition time and imaging dose compared to other proton radiography methods. The imaging system design is comprised of a volumetric (20 × 20 × 20 cm3) organic liquid scintillator working as a residual-range detector and a charge-coupled device (CCD) placed along the beams'-eye-view for capturing radiographic projections. The scintillation light produced within the scintillator volume in response to a 3-dimensional distribution of residual proton beam energies is captured by the CCD as a 2-dimensional grayscale image. A light intensity-to-water equivalent thickness (WET) curve provided WET values based on measured light intensities. The imaging properties of the system, including its contrast, signal-to-noise ratio, and spatial resolution (0.19 line-pairs/mm) were determined. WET values for selected Gammex phantom inserts including solid water, acrylic, and cortical bone were calculated from the radiographs with a relative accuracy of -0.82%, 0.91%, and -2.43%, respectively. Image blurring introduced by system optics was accounted for, resulting in sharper image features. Finally, the system's ability to reconstruct proton CT images from radiographic projections was demonstrated using a filtered back-projection algorithm. The WET retrieved from the reconstructed CT slice was within 0.3% of the WET obtained from MC. In this work, the viability of a cumulative approach to proton imaging using a volumetric liquid scintillator detector and at a clinically-relevant energy was demonstrated.

3.
Phys Med Biol ; 62(14): 5652-5667, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28593931

RESUMEN

Existing systems for proton beam dosimetry are limited in their ability to provide a complete, accurate, and detailed account of volumetric dose distribution. In this work, we describe the design and development of a portable, fast, and reusable liquid scintillator-based three-dimensional (3D) optical detection system for use in proton therapy. Our long-term goal is to use this system clinically for beam characterization, dosimetry, and quality assurance studies of discrete spot scanning proton beam systems. The system used a 20 × 20 × 20 cm3 liquid scintillator volume. Three mutually orthogonal cameras surrounding this volume captured scintillation photons emitted in response to the proton beams. The cameras exhibited a mean spatial resolution of 0.21 mm over the complete detection volume and a temporal resolution of 11 ms. The system is shown to be capable of capturing all 94 beam energies delivered by a synchrotron and performing rapid beam range measurements with a mean accuracy of 0.073 ± 0.030 mm over all energies. The range measurement uncertainty for doses less than 1 cGy was found to be ±0.355 mm, indicating high precision for low dose detection. Finally, we demonstrated that using multiple cameras allowed for the precise locations of the delivered beams to be tracked in 3D. We conclude that this detector is capable of real-time and accurate tracking of dynamic spot beam deliveries in 3D. The high-resolution light profiles it generates will be useful for future 3D construction of dose maps.


Asunto(s)
Terapia de Protones , Conteo por Cintilación/métodos , Radiometría , Dosificación Radioterapéutica , Conteo por Cintilación/instrumentación , Sincrotrones
4.
IEEE Trans Med Imaging ; 34(6): 1197-211, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25438307

RESUMEN

The performance evaluation of a variety of small animal tomography measurement approaches and algorithms for recovery of fluorescent absorption cross section has not been conducted. Herein, we employed an intensified CCD system installed in a commercial small animal CT (Computed Tomography) scanner to compare image reconstructions from time-independent, continuous wave (CW) measurements and from time-dependent, frequency domain (FD) measurements in a series of physical phantoms specifically designed for evaluation. Comparisons were performed as a function of (1) number of projections, (2) the level of preprocessing filters used to improve the signal-to-noise ratio (SNR), (3) endogenous heterogeneity of optical properties, as well as in the cases of (4) two fluorescent targets and (5) a mouse-shaped phantom. Assessment of quantitative recovery of fluorescence absorption cross section was performed using a fully parallel, regularization-free, linear reconstruction algorithm with diffusion approximation (DA) and high order simplified spherical harmonics ( SPN) approximation to the radiative transport equation (RTE). The results show that while FD measurements may result in superior image reconstructions over CW measurements, data acquisition times are significantly longer, necessitating further development of multiple detector/source configurations, improved data read-out rates, and detector technology. FD measurements with SP3 reconstructions enabled better quantitative recovery of fluorescent target strength, but required increased computational expense. Despite the developed parallel reconstruction framework being able to achieve more than 60 times speed increase over sequential implementation, further development in faster parallel acceleration strategies for near-real time and real-time image recovery and more precise forward solution is necessary.


Asunto(s)
Imagen Óptica/instrumentación , Imagen Óptica/métodos , Tomografía/instrumentación , Tomografía/métodos , Algoritmos , Animales , Procesamiento de Imagen Asistido por Computador , Ratones , Modelos Biológicos , Fantasmas de Imagen
5.
Obesity (Silver Spring) ; 22(10): 2186-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044620

RESUMEN

OBJECTIVE: Investigational, near-infrared fluorescence (NIRF) lymphatic imaging was used to assess lymphatic architecture and contractile function in participants diagnosed with Dercum's disease, a rare, poorly understood disorder characterized by painful lipomas in subcutaneous adipose tissues. METHODS: After informed consent and as part of an FDA-approved feasibility study to evaluate lymphatics in diseases in which their contribution has been implicated, three women diagnosed with Dercum's disease and four control subjects were imaged. Each participant received multiple intradermal and subcutaneous injections of indocyanine green (ICG, total dose ≤400 µg) in arms, legs, and/or trunk. Immediately after injection, ICG was taken up by the lymphatics and NIRF imaging was conducted. RESULTS: The lymphatics in the participants with Dercum's disease were intact and dilated, yet sluggishly propelled lymph when compared to control lymphatics. Palpation of regions containing fluorescent lymphatic pathways revealed tender, fibrotic, tubular structures within the subcutaneous adipose tissue that were associated with painful nodules, and, in some cases, masses of fluorescent tissue indicating that some lipomas may represent tertiary lymphoid tissues. CONCLUSIONS: These data support the hypothesis that Dercum's disease may be a lymphovascular disorder and suggest a possible association between abnormal adipose tissue deposition and abnormal lymphatic structure and function.


Asunto(s)
Adiposis Dolorosa/complicaciones , Adiposis Dolorosa/patología , Enfermedades Linfáticas/etiología , Enfermedades Linfáticas/patología , Grasa Subcutánea/patología , Femenino , Humanos , Verde de Indocianina , Rayos Infrarrojos , Sistema Linfático/patología , Persona de Mediana Edad , Imagen Óptica , Dolor , Fenotipo
6.
Opt Express ; 21(20): 24129-38, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24104323

RESUMEN

Non-invasive injectable cellular therapeutic strategies based on sustained delivery of physiological levels of BMP-2 for spinal fusion are emerging as promising alternatives, which could provide sufficient fusion without the associated surgical risks. However, these injectable therapies are dependent on bone formation occurring only at the specific target region. In this study, we developed and deployed fluorescence gene reporter tomography (FGRT) to provide information on in vivo cell localization and viability. This information is sought to confirm the ideal placement of the materials with respect to the area where early bone reaction is required, ultimately providing three dimensional data about the future fusion. However, because almost all conventional fluorescence gene reporters require visible excitation wavelengths, current in vivo imaging of fluorescent proteins is limited by high tissue absorption and confounding autofluorescence. We previously administered fibroblasts engineered to produce BMP-2, but is difficult to determine 3-D information of placement prior to bone formation. Herein we used the far-red fluorescence gene reporter, IFP1.4 to report the position and viability of fibroblasts and developed 3-D tomography to provide placement information. A custom small animal, far-red fluorescence tomography system integrated into a commercial CT scanner was used to assess IFP1.4 fluorescence and to demark 3-D placement of encapsulated fibroblasts with respect to the vertebrae and early bone formation as assessed from CT. The results from three experiments showed that the placement of the materials within the spine could be detected. This work shows that in vivo fluorescence gene reporter tomography of cell-based gene therapy is feasible and could help guide cell-based therapies in preclinical models.


Asunto(s)
Genes Reporteros , Terapia Genética , Tomografía Computarizada por Rayos X/métodos , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/uso terapéutico , Supervivencia Celular , Fluorescencia , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Imagen Óptica , Fusión Vertebral
7.
J Biomed Opt ; 18(10): 101305, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23797877

RESUMEN

Fluorescence gene reporters have recently become available for excitation at far-red wavelengths, enabling opportunities for small animal in vivo gene reporter fluorescence tomography (GRFT). We employed multiple projections of the far-red fluorescence gene reporters IFP1.4 and iRFP, excited by a point source in transillumination geometry in order to reconstruct the location of orthotopically implanted human prostate cancer (PC3), which stably expresses the reporter. Reconstruction was performed using a linear radiative-transfer-based regularization-free tomographic method. Positron emission tomography (PET) imaging of a radiolabeled antibody-based agent that targeted epithelial cell adhesion molecule overexpressed on PC3 cells was used to confirm in vivo GRFT results. Validation of GRFT results was also conducted from ex vivo fluorescence imaging of resected prostate tumor. In addition, in mice with large primary prostate tumors, a combination of GRFT and PET showed that the radiolabeled antibody did not penetrate the tumor, consistent with known tumor transport limitations of large (∼150 kDa) molecules. These results represent the first tomography of a living animal using far-red gene reporters.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Proteínas Luminiscentes/análisis , Microscopía Fluorescente/métodos , Neoplasias de la Próstata/química , Neoplasias de la Próstata/metabolismo , Tomografía/métodos , Algoritmos , Animales , Línea Celular Tumoral , Genes Reporteros , Humanos , Proteínas Luminiscentes/farmacocinética , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Reproducibilidad de los Resultados , Proteína Fluorescente Roja
8.
Phys Med Biol ; 57(24): 8135-52, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171509

RESUMEN

The work presented herein describes the system design and performance evaluation of a miniaturized near-infrared fluorescence (NIRF) frequency-domain photon migration (FDPM) system with non-contact excitation and homodyne detection capability for small animal fluorescence tomography. The FDPM system was developed specifically for incorporation into a Siemens micro positron emission tomography/computed tomography (microPET/CT) commercial scanner for hybrid small animal imaging, but could be adapted to other systems. Operating at 100 MHz, the system noise was minimized and the associated amplitude and phase errors were characterized to be ±0.7% and ±0.3°, respectively. To demonstrate the tomographic ability, a commercial mouse-shaped phantom with 50 µM IRDye800CW and 68Ga containing inclusion was used to associate PET and NIRF tomography. Three-dimensional mesh generation and anatomical referencing was accomplished through CT. A third-order simplified spherical harmonics approximation (SP3) algorithm, for efficient prediction of light propagation in small animals, was tailored to incorporate the FDPM approach. Finally, the PET-NIRF target co-localization accuracy was analyzed in vivo with a dual-labeled imaging agent targeting orthotopic growth of human prostate cancer. The obtained results validate the integration of time-dependent fluorescence tomography system within a commercial microPET/CT scanner for multimodality small animal imaging.


Asunto(s)
Imagen Multimodal/instrumentación , Fotones , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Fantasmas de Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Ondas de Radio , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...