Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
BMC Neurol ; 24(1): 116, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594621

BACKGROUND: The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS: Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS: In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION: These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION: NCT03186989 since June 14, 2017.


Alzheimer Disease , Child , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Butyrylcholinesterase/genetics , Phenotype
2.
Bioorg Chem ; 147: 107373, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653149

The escalating prevalence of Alzheimer's disease (AD) has prompted extensive research into potential therapeutic interventions, with a specific focus on molecular targets such as amyloid beta (Aß) and tau protein aggregation. In this study, a series of α-ketoamide derivatives was synthesized from ß,γ-unsaturated α-keto thioesters, achieving high purity and good yield. Thioflavin T based Aß aggregation assay identified four promising compounds (BD19, BD23, BD24, and BD27) that demonstrated significant inhibitory effects on Aß aggregation. BD23, selected for its better solubility (0.045 ± 0.0012 mg/ml), was further subjected to in vitro Parallel Artificial Membrane Permeability Assay to determine the Blood-Brain-Barrier permeability and emerged as BBB permeable with permeability rate (Pe) of 10.66 ± 8.11 × 10-6 cm/s. In addition to its Aß inhibitory properties, BD23 exhibited significant inhibition of heparin-induced tau aggregation and demonstrated non-toxicity in SHSY5Y cell lines. Subsequent in vivo assays were conducted, administering compound BD23 to an Aß induced mouse model of AD at various doses (1, 2, & 5 mg/kg). The results revealed a noteworthy enhancement in cognitive functions, particularly when BD23 was administered at a dosage of 5 mg/kg, comparable to the effects observed with the standard dose of Donepezil (DNP). In silico investigations, including molecular docking, molecular dynamics simulations, and Density Functional Theory calculations provided insights into BD23's interactions with the targets and electronic properties. These analyses contribute to the understanding of the therapeutic potential of the lead compounds BD23 which further pave the way for further exploration of its therapeutic potential in the context of AD.


Alzheimer Disease , Amides , Amyloid beta-Peptides , Dose-Response Relationship, Drug , Protein Aggregates , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Animals , Mice , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Protein Aggregates/drug effects , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Male
3.
Biol Reprod ; 110(1): 63-77, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-37741056

Little is known about the non-neuronal spermic cholinergic system, which may regulate sperm motility and the acrosome reaction initiation process. We investigated the presence of the key acetylcholine (ACh)-biosynthesizing enzyme, choline acetyltransferase (ChAT), and the acetylcholine-degrading enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and two ACh-receptors in human spermatozoa and seminal plasma. Fresh ejaculates were used for intra- and extracellular flow cytometric analysis of ChAT, AChE, BChE, and alpha-7-nicotinic and M1-muscarinic ACh-receptors in sperm. For determining the source of soluble enzymes, frozen seminal samples (n = 74) were selected on two bases: (1) from vasectomized (n = 37) and non-vasectomized (n = 37) subjects and (2) based on levels of alpha-glucosidase, fructose, or zinc to define sample subgroups with high or low fluid contribution from the epididymis and seminal vesicle, and prostate, respectively. Flow cytometric analyses revealed that ChAT was expressed intracellularly in essentially all spermatozoa. ChAT was also present in a readily membrane-detachable form at the extracellular membrane of at least 18% of the spermatozoa. These were also highly positive for intra- and extracellular BChE (>83%) and M1 (>84%) and α7 (>59%) ACh-receptors. Intriguingly, the sperm was negative for AChE. Analyses of seminal plasma revealed that spermatozoa and epididymides were major sources of soluble ChAT and BChE, whereas soluble AChE most likely originated from epididymides and seminal vesicles. Prostate had relatively minor contribution to the pool of the soluble enzymes in the seminal fluid. In conclusion, human spermatozoa exhibited a cholinergic phenotype and were one of the major sources of soluble ChAT and BChE in ejaculate. We also provide the first evidence for ChAT as an extracellularly membrane-anchored protein.


Acetylcholine , Acetylcholinesterase , Humans , Male , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Semen/metabolism , Sperm Motility , Spermatozoa/metabolism , Cholinergic Agents
4.
Alzheimers Res Ther ; 15(1): 137, 2023 08 18.
Article En | MEDLINE | ID: mdl-37596686

BACKGROUND: Alzheimer's disease (AD) is an age-related disease characterized by altered cognition, neuroinflammation, and neurodegeneration against which there is presently no effective cure. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin involved in the learning and memory process, with a crucial role in synaptic plasticity and neuronal survival. Several findings support that a reduced BDNF expression in the human brain is associated with AD pathogenesis. BDNF has been proposed as a potential therapy for AD, but BDNF has low brain penetration. In this study, we used an innovative encapsulated cell biodelivery (ECB) device, containing genetically modified cells capable of releasing BDNF and characterized its feasibility and therapeutic effects in the novel App knock-in AD mouse model (AppNL-G-F). METHODS: ECB's containing human ARPE-19 cells genetically modified to release BDNF (ECB-BDNF devices) were stereotactically implanted bilaterally into hippocampus of 3-month-old AppNL-G-F mice. The stability of BDNF release and its effect on AD pathology were evaluated after 1, 2-, and 4-months post-implantation by immunohistochemical and biochemical analyses. Exploratory and memory performance using elevated plus maze (EPM) and Y-maze test were performed in the 4-months treatment group. Immunological reaction towards ECB-BDNF devices were studied under ex vivo and in vivo settings. RESULTS: The surgery and the ECB-BDNF implants were well tolerated without any signs of unwanted side effects or weight loss. ECB-BDNF devices did not induce host-mediated immune response under ex vivo set-up but showed reduced immune cell attachment when explanted 4-months post-implantation. Elevated BDNF staining around ECB-BDNF device proximity was detected after 1, 2, and 4 months treatment, but the retrieved devices showed variable BDNF release. A reduction of amyloid-ß (Aß) plaque deposition was observed around ECB-BDNF device proximity after 2-months of BDNF delivery. CONCLUSIONS: The result of this study supports the use of ECB device as a promising drug-delivery approach to locally administer BBB-impermeable factors for treating neurodegenerative conditions like AD. Optimization of the mouse-sized devices to reduce variability of BDNF release is needed to employ the ECB platform in future pre-clinical research and therapy development studies.


Alzheimer Disease , Brain-Derived Neurotrophic Factor , Drug Delivery Systems , Animals , Mice , Alzheimer Disease/therapy , Amyloid beta-Peptides , Brain-Derived Neurotrophic Factor/therapeutic use , Feasibility Studies , Drug Delivery Systems/methods
5.
ACS Chem Neurosci ; 14(4): 749-765, 2023 02 15.
Article En | MEDLINE | ID: mdl-36749117

Various pharmacoepidemiological investigational studies have indicated that Proton Pump Inhibitors (PPIs) may increase the likelihood of developing Alzheimer's disease (AD) and non-AD related dementias. Previously, we have reported the inhibition of the acetylcholine biosynthesizing enzyme choline acetyltransferase (ChAT) by PPIs, for which omeprazole, lansoprazole, and pantoprazole exhibited IC50 values of 0.1, 1.5, and 5.3 µM, respectively. In this study we utilize a battery of computational tools to perceive a mechanistic insight into the molecular interaction of PPIs with the ChAT binding pocket that may further help in designing novel ChAT ligands. Various in-silico tools make it possible for us to elucidate the binding interaction, conformational stability, and dynamics of the protein-ligand complexes within a 200 ns time frame. Further, the binding free energies for the PPI-ChAT complexes were explored. The results suggest that the PPIs exhibit equal or higher binding affinity toward the ChAT catalytic tunnel and are stable throughout the simulated time and that the pyridine ring of the PPIs interacts primarily with the catalytic residue His324. A free energy landscape analysis showed that the folding process was linear, and the residue interaction network analysis can provide insight into the roles of various amino acid residues in stabilization of the PPIs in the ChAT binding pocket. As a major factor for the onset of Alzheimer's disease is linked to cholinergic dysfunction, our previous and the present findings give clear insight into the PPI interaction with ChAT. The scaffold can be further simplified to develop novel ChAT ligands, which can also be used as ChAT tracer probes for the diagnosis of cholinergic dysfunction and to initiate timely therapeutic interventions to prevent or delay the progression of AD.


Alzheimer Disease , Proton Pump Inhibitors , Humans , Proton Pump Inhibitors/pharmacology , Choline O-Acetyltransferase/metabolism , Alzheimer Disease/drug therapy , Omeprazole/pharmacology , Cholinergic Agents
6.
Front Aging Neurosci ; 14: 876019, 2022.
Article En | MEDLINE | ID: mdl-35693340

Background: Cholinergic drugs are the most commonly used drugs for the treatment of Alzheimer's disease (AD). Therefore, a better understanding of the cholinergic system and its relation to both AD-related biomarkers and cognitive functions is of high importance. Objectives: To evaluate the relationships of cerebrospinal fluid (CSF) cholinergic enzymes with markers of amyloidosis, neurodegeneration, neurofibrillary tangles, inflammation and performance on verbal episodic memory in a memory clinic cohort. Methods: In this cross-sectional study, 46 cholinergic drug-free subjects (median age = 71, 54% female, median MMSE = 28) were recruited from an Icelandic memory clinic cohort targeting early stages of cognitive impairment. Enzyme activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was measured in CSF as well as levels of amyloid-ß1-42 (Aß42), phosphorylated tau (P-tau), total-tau (T-tau), neurofilament light (NFL), YKL-40, S100 calcium-binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Verbal episodic memory was assessed with the Rey Auditory Verbal Learning (RAVLT) and Story tests. Results: No significant relationships were found between CSF Aß42 levels and AChE or BuChE activity (p > 0.05). In contrast, T-tau (r = 0.46, p = 0.001) and P-tau (r = 0.45, p = 0.002) levels correlated significantly with AChE activity. Although neurodegeneration markers T-tau and NFL did correlate with each other (r = 0.59, p < 0.001), NFL did not correlate with AChE (r = 0.25, p = 0.09) or BuChE (r = 0.27, p = 0.06). Inflammation markers S100B and YKL-40 both correlated significantly with AChE (S100B: r = 0.43, p = 0.003; YKL-40: r = 0.32, p = 0.03) and BuChE (S100B: r = 0.47, p < 0.001; YKL-40: r = 0.38, p = 0.009) activity. A weak correlation was detected between AChE activity and the composite score reflecting verbal episodic memory (r = -0.34, p = 0.02). LASSO regression analyses with a stability approach were performed for the selection of a set of measures best predicting cholinergic activity and verbal episodic memory score. S100B was the predictor with the highest model selection frequency for both AChE (68%) and BuChE (73%) activity. Age (91%) was the most reliable predictor for verbal episodic memory, with selection frequency of both cholinergic enzymes below 10%. Conclusions: Results indicate a relationship between higher activity of the ACh-degrading cholinergic enzymes with increased neurodegeneration, neurofibrillary tangles and inflammation in the stages of pre- and early symptomatic dementia, independent of CSF Aß42 levels.

7.
Int J Mol Sci ; 23(11)2022 May 28.
Article En | MEDLINE | ID: mdl-35682752

The native function of amyloid-ß (Aß) peptides is still unexplored. However, several recent reports suggest a prominent role of Aß peptides in acetylcholine homeostasis. To clarify this role of Aß, we have reported that Aß peptides at physiological concentrations can directly enhance the catalytic efficiency of the key cholinergic enzyme, choline acetyltransferase (ChAT), via an allosteric interaction. In the current study, we further aimed to elucidate the underlying ChAT-Aß interaction mechanism using in silico molecular docking and dynamics analysis. Docking analysis suggested two most probable binding clusters on ChAT for Aß40 and three for Aß42. Most importantly, the docking results were challenged with molecular dynamic studies of 100 ns long simulation in triplicates (100 ns × 3 = 300 ns) and were analyzed for RMSD, RMSF, RoG, H-bond number and distance, SASA, and secondary structure assessment performed together with principal component analysis and the free-energy landscape diagram, which indicated that the ChAT-Aß complex system was stable throughout the simulation time period with no abrupt motion during the evolution of the simulation across the triplicates, which also validated the robustness of the simulation study. Finally, the free-energy landscape analysis confirmed the docking results and demonstrated that the ChAT-Aß complexes were energetically stable despite the unstructured nature of C- and N-terminals in Aß peptides. Overall, this study supports the reported in vitro findings that Aß peptides, particularly Aß42, act as endogenous ChAT-Potentiating-Ligand (CPL), and thereby supports the hypothesis that one of the native biological functions of Aß peptides is the regulation of acetylcholine homeostasis.


Alzheimer Disease , Amyloid beta-Peptides , Acetylcholine/metabolism , Allosteric Site , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Choline O-Acetyltransferase/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
8.
Front Aging Neurosci ; 14: 756687, 2022.
Article En | MEDLINE | ID: mdl-35557841

Background: Basal forebrain cholinergic neurons are dependent on nerve growth factor (NGF) for growth and survival and these cells are among the first to degenerate in Alzheimer's disease (AD). Targeted delivery of NGF has been suggested as a potential therapy for AD. This hypothesis was tested in a clinical trial with encapsulated cell biodelivery of NGF (NGF-ECB) in AD patients. Three of six patients showed improved biomarkers for cognition by the end of the study. Here, we report on the effects of targeted delivery of NGF on human resting EEG. Materials and methods: NGF-ECB implants were implanted bilaterally in the basal forebrain of six AD patients for 12 months. EEG recordings and quantitative analysis were performed at baseline, 3 and 12 months of NGF delivery, and analyzed for correlation with changes in Mini-mental state examination (MMSE) and levels of the cholinergic marker choline acetyltransferase (ChAT) in cerebrospinal fluid (CSF). Results: We found significant correlations between the topographic variance of EEG spectral power at the three study points (baseline, 3 and 12 months) and changes in MMSE and CSF ChAT. This possible effect of NGF was identified in a narrow window of alpha frequency 10-11.5 Hz, where a stabilization in MMSE score during treatment was related to an increase in EEG alpha power. A similar relation was observed between the alpha power and ChAT. More theta power at 6.5 Hz was on the contrary associated with a decrease in CSF ChAT during the trial period. Conclusion: In this exploratory study, there was a positive correlative pattern between physiological high-frequency alpha activity and stabilization in MMSE and increase in CSF ChAT in AD patients receiving targeted delivery of NGF to the cholinergic basal forebrain.

9.
Front Aging Neurosci ; 13: 714186, 2021.
Article En | MEDLINE | ID: mdl-34475820

Gradual decline in cholinergic transmission and cognitive function occurs during normal aging, whereas pathological loss of cholinergic function is a hallmark of different types of dementia, including Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease dementia (PDD). Glial cell line-derived neurotrophic factor (GDNF) is known to modulate and enhance the dopamine system. However, how endogenous GDNF influences brain cholinergic transmission has remained elusive. In this study, we explored the effect of a twofold increase in endogenous GDNF (Gdnf hypermorphic mice, Gdnf wt/hyper) on cholinergic markers and cognitive function upon aging. We found that Gdnf wt/hyper mice resisted an overall age-associated decline in the cholinergic index observed in the brain of Gdnf wt/wt animals. Biochemical analysis revealed that the level of nerve growth factor (NGF), which is important for survival and function of central cholinergic neurons, was significantly increased in several brain areas of old Gdnf wt/hyper mice. Analysis of expression of genes involved in cholinergic transmission in the cortex and striatum confirmed modulation of cholinergic pathways by GDNF upon aging. In line with these findings, Gdnf wt/hyper mice did not undergo an age-related decline in cognitive function in the Y-maze test, as observed in the wild type littermates. Our results identify endogenous GDNF as a potential modulator of cholinergic transmission and call for future studies on endogenous GDNF function in neurodegenerative disorders characterized by cognitive impairments, including AD, LBD, and PDD.

10.
Front Aging Neurosci ; 13: 704583, 2021.
Article En | MEDLINE | ID: mdl-34512307

INTRODUCTION: Alzheimer's disease (AD) is the most prevalent form of dementia with symptoms of deteriorating cognitive functions and memory loss, partially as a result of a decrease in cholinergic neurotransmission. The disease is incurable and treatment with cholinesterase inhibitors (ChEIs) is symptomatic. Choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine (ACh), has been proven recently to be present in both cerebrospinal fluid (CSF) and plasma. As ChAT plays a role in regulating the extracellular ACh levels, it may have an impact on prognosis and cognitive performance in AD patients. OBJECTIVES: To measure ChAT activity and its protein concentration in CSF and plasma from patients with AD, mild cognitive impairment (MCI), or Subjective cognitive impairment (SCI). METHODS: Plasma and CSF samples were obtained from 21 AD, 32 MCI, and 30 SCI patients. The activity and protein levels of ChAT and acetylcholinesterase (AChE), the enzyme catalyzing the hydrolysis of ACh, were analyzed using an integrated activity and protein concentration ELISA-like assay. A Cholinergic Index was calculated as the ratio of ChAT to AChE activities in CSF. The data were analyzed in relation to dementia biomarkers and cognitive performance of the patients. RESULTS: The CSF ChAT activity was significantly higher (55-67%) in MCI patients compared to AD and SCI cases. The CSF Cholinergic Index was 41 and 22% lower in AD patients than in MCI and SCI subjects, respectively. This index correlated positively with the Aß42/p-tau ratio in CSF in SCI but negatively with that in AD and MCI. The ChAT activity and protein levels in plasma exhibited significant differences with the pattern of AD>>M C I>SCI. CONCLUSION: This is the first study investigating soluble levels of the key cholinergic enzyme, ChAT, in both plasma and CSF of individuals at different clinical stages of dementia. Although further validation is needed, the overall pattern of the results suggests that in the continuum of AD, the cholinergic signaling exhibits an inverse U-shape dynamic of changes in the brain that greatly differs from the changes observed in the plasma compartment.

11.
Genet Mol Biol ; 43(4): e20190404, 2020.
Article En | MEDLINE | ID: mdl-33306773

The choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are fundamental to neurophysiological functions of the central cholinergic system. We confirmed and quantified the presence of extracellular ChAT protein in human plasma and also characterized ChAT and VAChT polymorphisms, protein and activity levels in plasma of Alzheimer's disease patients (AD; N = 112) and in cognitively healthy controls (EC; N = 118). We found no significant differences in plasma levels of ChAT activity and protein between AD and EC groups. Although no differences were observed in plasma ChAT activity and protein concentration among ChEI-treated and untreated AD patients, ChAT activity and protein levels variance in plasma were higher among the rivastigmine-treated group (ChAT protein: p = 0.005; ChAT activity: p = 0.0002). Moreover, AD patients homozygous for SNP rs1880676 A allele exhibited higher levels of ChAT activity. Considering this is the first study to report the influence of genetic variability of CHAT locus over ChAT activity in AD patients plasma, it opens a new set of important questions on peripheral cholinergic signaling in AD.

12.
Front Genet ; 11: 1022, 2020.
Article En | MEDLINE | ID: mdl-33101365

Typical cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the human NOTCH3 gene. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy is characterized by subcortical ischemic strokes due to severe arteriopathy and fibrotic thickening of small vessels. Blood regulating vascular smooth muscle cells (VSMCs) appear as the key target in CADASIL but the pathogenic mechanisms remain unclear. With the hypothesis that brain glucose metabolism is disrupted in VSMCs in CADASIL, we investigated post-mortem tissues and VSMCs derived from CADASIL patients to explore gene expression and protein immunoreactivity of glucose transporters (GLUTs), particularly GLUT4 and GLUT2 using quantitative RT-PCR and immunohistochemical techniques. In vitro cell model analysis indicated that both GLUT4 and -2 gene expression levels were down-regulated in VSMCs derived from CADASIL patients, compared to controls. In vitro studies further indicated that the down regulation of GLUT4 coincided with impaired glucose uptake in VSMCs, which could be partially rescued by insulin treatment. Our observations on reduction in GLUTs in VSMCs are consistent with previous findings of decreased cerebral blood flow and glucose uptake in CADASIL patients. That impaired ability of glucose uptake is rescued by insulin is also consistent with previously reported lower proliferation rates of VSMCs derived from CADASIL subjects. Overall, these observations are consistent with the development of severe cerebral arteriopathy in CADASIL, in which VSMCs are replaced by widespread fibrosis.

13.
Biochem Pharmacol ; 182: 114212, 2020 12.
Article En | MEDLINE | ID: mdl-32866455

Recent studies have linked prolonged use of the most commonly prescribed proton pump inhibitors (PPIs) with declined human sperm function and infertility. Here, we report for the first time the most plausible underlying mechanism for this unwarranted secondary mode of action. We followed up on a recent serendipitous discovery in our laboratory regarding PPIs' off-target action and performed detailed pharmacodynamic analyses by combining in silico and in vitro studies to determine the off-target effect of one of the most commonly used PPI, esomeprazole, on the key human acetylcholine biosynthesizing enzyme, choline acetyltransferase (ChAT; EC 2.3.1.6). A pivotal enzyme in the spermic cholinergic system that governs the sperm motility, concentration and quality. Our results were conclusive and showed that both the racemic form, omeprazole and its pure S-enantiomer, esomeprazole, acted as potent mixed-competitive inhibitor of human ChAT with a global inhibition constant (Ki) of 88 nM (95%CI: 10-167 nM) for esomeprazole and 178 nM (95%CI: 140-230 nM) for the racemic drug omeprazole. Most importantly, esomeprazole substantially reduces both total number of motile sperm (by 36%, p < 0.001; and 21% p < 0.0001, at 10 and 100 nM, respectively) as well as the total number of sperm with progressive motility (by 42% p < 0.0016 and by 26% p < 0.0001, respectively) after 60 min relative to 20 min incubation in our ex vivo functional assay performed on ejaculated human sperm. In conclusion, this study presents a completely new perspective regarding PPIs secondary mode of action/unwarranted side effects and calls for further mechanistic and larger clinical studies to elucidate the role of PPIs in infertility.


Choline O-Acetyltransferase/metabolism , Esomeprazole/metabolism , Esomeprazole/pharmacology , Proton Pump Inhibitors/metabolism , Proton Pump Inhibitors/pharmacology , Sperm Motility/drug effects , Adult , Choline/metabolism , Choline/pharmacology , Choline O-Acetyltransferase/chemistry , Dose-Response Relationship, Drug , Humans , Male , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , Sperm Motility/physiology , Spermatozoa/drug effects , Spermatozoa/metabolism
14.
Alzheimers Res Ther ; 12(1): 92, 2020 08 04.
Article En | MEDLINE | ID: mdl-32753068

BACKGROUND: Neuroinflammation has gained increasing attention as a potential contributing factor in the onset and progression of Alzheimer's disease (AD). The objective of this study was to examine the association of selected cerebrospinal fluid (CSF) inflammatory and neuronal degeneration markers with signature CSF AD profile and cognitive functions among subjects at the symptomatic pre- and early dementia stages. METHODS: In this cross-sectional study, 52 subjects were selected from an Icelandic memory clinic cohort. Subjects were classified as having AD (n = 28, age = 70, 39% female, Mini-Mental State Examination [MMSE] = 27) or non-AD (n = 24, age = 67, 33% female, MMSE = 28) profile based on the ratio between CSF total-tau (T-tau) and amyloid-ß1-42 (Aß42) values (cut-off point chosen as 0.52). Novel CSF biomarkers included neurofilament light (NFL), YKL-40, S100 calcium-binding protein B (S100B) and glial fibrillary acidic protein (GFAP), measured with enzyme-linked immunosorbent assays (ELISAs). Subjects underwent neuropsychological assessment for evaluation of different cognitive domains, including verbal episodic memory, non-verbal episodic memory, language, processing speed, and executive functions. RESULTS: Accuracy coefficient for distinguishing between the two CSF profiles was calculated for each CSF marker and test. Novel CSF markers performed poorly (area under curve [AUC] coefficients ranging from 0.61 to 0.64) compared to tests reflecting verbal episodic memory, which all performed fair (AUC > 70). LASSO regression with a stability approach was applied for the selection of CSF markers and demographic variables predicting performance on each cognitive domain, both among all subjects and only those with a CSF AD profile. Relationships between CSF markers and cognitive domains, where the CSF marker reached stability selection criteria of > 75%, were visualized with scatter plots. Before calculations of corresponding Pearson's correlations coefficients, composite scores for cognitive domains were adjusted for age and education. GFAP correlated with executive functions (r = - 0.37, p = 0.01) overall, while GFAP correlated with processing speed (r = - 0.68, p < 0.001) and NFL with verbal episodic memory (r = - 0.43, p = 0.02) among subjects with a CSF AD profile. CONCLUSIONS: The novel CSF markers NFL and GFAP show potential as markers for cognitive decline among individuals with core AD pathology at the symptomatic pre- and early stages of dementia.


Alzheimer Disease , Cognitive Dysfunction , Aged , Amyloid beta-Peptides , Biomarkers , Cognition , Cross-Sectional Studies , Female , Humans , Male , Peptide Fragments , tau Proteins
15.
Alzheimers Dement ; 16(7): 1031-1042, 2020 07.
Article En | MEDLINE | ID: mdl-32383816

INTRODUCTION: Several pharmacoepidemiological studies indicate that proton pump inhibitors (PPIs) significantly increase the risk of dementia. Yet, the underlying mechanism is not known. Here, we report the discovery of an unprecedented mode of action of PPIs that explains how PPIs may increase the risk of dementia. METHODS: Advanced in silico docking analyses and detailed enzymological assessments were performed on PPIs against the core-cholinergic enzyme, choline-acetyltransferase (ChAT), responsible for biosynthesis of acetylcholine (ACh). RESULTS: This report shows compelling evidence that PPIs act as inhibitors of ChAT, with high selectivity and unprecedented potencies that lie far below their in vivo plasma and brain concentrations. DISCUSSION: Given that accumulating evidence points at cholinergic dysfunction as a driving force of major dementia disorders, our findings mechanistically explain how prolonged use of PPIs may increase incidence of dementia. This call for restrictions for prolonged use of PPIs in elderly, and in patients with dementia or amyotrophic lateral sclerosis.


Choline O-Acetyltransferase/antagonists & inhibitors , Dementia/epidemiology , Proton Pump Inhibitors/pharmacology , Computer Simulation , Dementia/chemically induced , Humans , Incidence , Molecular Docking Simulation , Proton Pump Inhibitors/adverse effects , Risk
16.
Front Mol Neurosci ; 12: 239, 2019.
Article En | MEDLINE | ID: mdl-31680850

Alzheimer's disease (AD) is a progressive disease with early degeneration of the central cholinergic neurons. Currently, three of four AD drugs act by inhibiting the acetylcholine (ACh) degrading enzyme, acetylcholinesterase (AChE). Efficacy of these drugs depends on available amount of ACh, which is biosynthesized by choline acetyltransferase (ChAT). We investigated whether treatment with a cholinesterase-inhibitor, galantamine, alters the relative levels of AChE to ChAT in cerebrospinal fluid (CSF) and whether levels of these CSF biomarkers correlate with in vivo AChE activity and nicotinic binding sites in the brain assessed by positron emission tomography (PET). Protein concentrations and activities of ChAT and AChE were measured in CSF of 18 patients with mild AD prior to and after 3 months of treatment with galantamine (n = 12) or placebo (n = 6), followed by nine additional months of galantamine treatment in all patients. A Cholinergic index was defined as the ratio of ChAT to AChE in CSF and was evaluated in relation to the in vivo AChE activity, the nicotinic binding sites and different measures of cognition. Besides an expected inhibition of AChE activity, galantamine treatment was accompanied by a mild increase in CSF ChAT activity. Thereby, the Cholinergic index was significantly increased in the Galantamine group (60% ± 14) after 3 months compared to baseline (p < 0.0023) or (p < 0.0004). This index remained high in the Galantamine group compared to baseline (54% ± 11) at 12 months follow-up, while it showed an increase in the Placebo group when they switched to active galantamine treatment (44% ± 14 vs. baseline, 61% ± 14 vs. 3 months, all p-values < 0.05). Furthermore, the in vivo brain AChE activity (assessed by PET) correlated with the CSF Cholinergic index at 12 months (r = 0.98, p < 0.001). The CSF Cholinergic index also correlated with ADAS-Cog and some other neuropsychological tests at 12 months. This is the first study assessing a CSF Cholinergic index in relation to treatment with a cholinesterase inhibitor. The treatment-specific increase in CSF ChAT activity suggests that cholinesterase-inhibitors may also increase the ACh-biosynthesis capacity in the patients. Additional studies are warranted to evaluate the utility of the CSF Cholinergic index as a biomeasure of therapeutic effect in AD.

17.
Alzheimers Res Ther ; 11(1): 80, 2019 09 12.
Article En | MEDLINE | ID: mdl-31511061

BACKGROUND: Up to 20% of patients with AD experience hallucinations. The pathological substrate is not known. Visual hallucinations (VH) are more common in dementia with Lewy bodies (DLB). In autopsy studies, up to 60% of patients with AD have concomitant Lewy body pathology. Decreased perfusion of the occipital lobe has been implicated in DLB patients with VH, and post-mortem studies point to both decreased cholinergic activity and reduced oxygenation of the occipital cortex in DLB. METHODS: We used biochemical methods to assess microvessel density (level of von Willebrand factor, a marker of endothelial cell content), ante-mortem oxygenation (vascular endothelial growth factor, a marker of tissue hypoxia; myelin-associated glycoprotein to proteolipid protein-1 ratio, a measure of tissue oxygenation relative to metabolic demand), cholinergic innervation (acetylcholinesterase and choline acetyltransferase), butyrylcholinesterase and insoluble α-synuclein content in the BA18 and BA19 occipital cortex obtained post-mortem from 23 AD patients who had experienced visual hallucinations, 19 AD patients without hallucinations, 19 DLB patients, and 36 controls. The cohorts were matched for age, gender and post-mortem interval. RESULTS: There was no evidence of reduced microvessel density, hypoperfusion or reduction in ChAT activity in AD with visual hallucinations. Acetylcholinesterase activity was reduced in both BA18 and BA19, in all 3 dementia groups, and the concentration was also reduced in BA19 in the DLB and AD without visual hallucinations groups. Insoluble α-synuclein was raised in the DLB group in both areas but not in AD either with or without visual hallucinations. CONCLUSIONS: Our results suggest that visual hallucinations in AD are associated with cholinergic denervation rather than chronic hypoperfusion or α-synuclein accumulation in visual processing areas of the occipital cortex.


Alzheimer Disease/pathology , Cholinergic Neurons/pathology , Hallucinations/pathology , Visual Cortex/pathology , Acetylcholine/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Cholinergic Neurons/metabolism , Female , Hallucinations/etiology , Hallucinations/metabolism , Humans , Lewy Body Disease/complications , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Male , Visual Cortex/blood supply , Visual Cortex/metabolism , Visual Pathways/metabolism , Visual Pathways/pathology
18.
Front Mol Neurosci ; 12: 176, 2019.
Article En | MEDLINE | ID: mdl-31417354

Background: A fundamental question in Alzheimer's disease (AD) is whether amyloid-ß (Aß) peptides and their deposition in the brain signify a direct pathological role or they are mere outcome of the disease pathophysiological events affecting neuronal function. It is therefore important to decipher their physiological role in the brain. So far, the overwhelming focus has been on the potential toxicity of Aß, often studied outside the crucial AD characteristics, i.e.: (i) the slow, decades-long disease progression that precedes clinical symptoms; (ii) the link to apolipoprotein-E ε4 allele as major risk factor; (iii) the selective early degeneration of cholinergic neurons. Previous studies, in vitro and cerebrospinal fluid (CSF) only, indicated one possible native function of Aß peptides is the allosteric modulation of acetylcholine homeostasis, via molecular interactions between Aß, apolipoprotein-E, and the acetylcholine-degrading enzymes, cholinesterases, resulting in the formation of acetylcholine-hydrolyzing complexes (BAßACs). Methods: Here, by combining sucrose-density gradient fractionation of post-mortem brains and in-house developed sensitive ELISA assays on the obtained fractions, we investigated the presence, levels and molecular interactions between Aß, apolipoprotein-E and cholinesterases for the first time in brain tissues. We examined three distinct brain regions of Alzheimer and non-demented subjects, plus a large number of Alzheimer CSF samples. Results: We report that both monomeric and oligomeric (homomeric and heteromeric) forms of Aß peptides are present in the brain of Alzheimer and non-demented individuals. Heteromeric Aß was found in stable complexes with apolipoprotein-E and/or cholinesterases, irrespective of APOE genotype or disease status, arguing in favor of a physiological dynamic formation and function for these complexes in the brain. The patterns and molecular sizes of the detected soluble Aß forms were closely matched between CSF and brain samples. This evinces that the detected Aß-apolipoprotein-E complexes and BAßACs in CSF most likely originate from the interstitial fluids of the brain. Conclusions: In conclusion, both light homomeric Aß oligomers and heteromeric Aß-ApoE and BAßACs are present and readily detectable in the brain, regardless of disease status and APOE4 genotype. Deeper knowledge of the physiological function of Aß is crucial for better understanding the early pathological events that decades later lead to manifestation of AD.

19.
Gut ; 68(7): 1210-1223, 2019 07.
Article En | MEDLINE | ID: mdl-30228216

OBJECTIVE: To determine if human colonic neuromuscular functions decline with increasing age. DESIGN: Looking for non-specific changes in neuromuscular function, a standard burst of electrical field stimulation (EFS) was used to evoke neuronally mediated (cholinergic/nitrergic) contractions/relaxations in ex vivomuscle strips of human ascending and descending colon, aged 35-91 years (macroscopically normal tissue; 239 patients undergoing cancer resection). Then, to understand mechanisms of change, numbers and phenotype of myenteric neurons (30 306 neurons stained with different markers), densities of intramuscular nerve fibres (51 patients in total) and pathways involved in functional changes were systematically investigated (by immunohistochemistry and use of pharmacological tools) in elderly (≥70 years) and adult (35-60 years) groups. RESULTS: With increasing age, EFS was more likely to evoke muscle relaxation in ascending colon instead of contraction (linear regression: n=109, slope 0.49%±0.21%/year, 95% CI), generally uninfluenced by comorbidity or use of medications. Similar changes were absent in descending colon. In the elderly, overall numbers of myenteric and neuronal nitric oxide synthase-immunoreactive neurons and intramuscular nerve densities were unchanged in ascending and descending colon, compared with adults. In elderly ascending, not descending, colon numbers of cell bodies exhibiting choline acetyltransferase immunoreactivity increased compared with adults (5.0±0.6 vs 2.4±0.3 neurons/mm myenteric plexus, p=0.04). Cholinergically mediated contractions were smaller in elderly ascending colon compared with adults (2.1±0.4 and 4.1±1.1 g-tension/g-tissue during EFS; n=25/14; p=0.04); there were no changes in nitrergic function or in ability of the muscle to contract/relax. Similar changes were absent in descending colon. CONCLUSION: In ascending not descending colon, ageing impairs cholinergic function.


Colon, Ascending/pathology , Colon, Ascending/physiopathology , Colon, Descending/pathology , Colon, Descending/physiopathology , Muscle Contraction/physiology , Nerve Fibers/pathology , Adult , Age Factors , Aged , Aged, 80 and over , Colon, Ascending/innervation , Colon, Descending/innervation , Electric Stimulation , Female , Humans , Male , Middle Aged , Nerve Fibers/physiology , Neural Pathways/pathology , Neural Pathways/physiopathology , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Tissue Culture Techniques
20.
Mol Neurobiol ; 56(7): 4601-4619, 2019 Jul.
Article En | MEDLINE | ID: mdl-30361890

OMI/HTRA2 (high-temperature requirement serine protease A2) is a mitochondrial serine protease involved in several cellular processes, including autophagy, chaperone activity, and apoptosis. Few studies on the role of OMI/HTRA2 in Alzheimer's disease (AD) are available, but none on its relationship with the cholinergic system and neurotrophic factors as well as other AD-related proteins. In this study, immunohistochemical analyses revealed that AD patients had a higher cytosolic distribution of OMI/HTRA2 protein compared to controls. Quantitative analyses on brain extracts indicated a significant increase in the active form of OMI/HTRA2 in the AD brain. Activated OMI/HTRA2 protein positively correlated with stress-associated read-through acetylcholinesterase activity. In addition, α7 nicotinic acetylcholine receptor gene expression, a receptor also known to be localized on the outer membrane of mitochondria, showed a strong correlation with OMI/HTRA2 gene expression in three different brain regions. Interestingly, the activated OMI/HTRA2 levels also correlated with the activity of the acetylcholine-biosynthesizing enzyme, choline acetyltransferase (ChAT); with levels of the neurotrophic factors, NGF and BDNF; with levels of the soluble fragments of amyloid precursor protein (APP); and with gene expression of the microtubule-associated protein tau in the examined brain regions. Overall, the results demonstrate increased levels of the mitochondrial serine protease OMI/HTRA2, and a coherent pattern of association between the activated form of OMI/HTRA2 and several key proteins involved in AD pathology. In this paper, we propose a new hypothetical model to highlight the importance and needs of further investigation on the role of OMI/HTRA2 in the mitochondrial function and AD.


Acetylcholine/metabolism , Alzheimer Disease/enzymology , Brain/enzymology , High-Temperature Requirement A Serine Peptidase 2/metabolism , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Aged , Aged, 80 and over , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Biomarkers/metabolism , Brain/pathology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Butyrylcholinesterase/metabolism , Female , Gene Expression Regulation , High-Temperature Requirement A Serine Peptidase 2/genetics , Humans , Male , Middle Aged , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , tau Proteins/genetics , tau Proteins/metabolism
...