Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 95
1.
Vaccines (Basel) ; 12(4)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675805

Chlamydia trachomatis (Ct) infections are the most common sexually transmitted infection (STI). Despite effective antibiotics for Ct, undetected infections or delayed treatment can lead to infertility, ectopic pregnancies, and chronic pelvic pain. Besides humans, chlamydia poses similar health challenges in animals such as C. suis (Cs) in pigs. Based on the similarities between humans and pigs, as well as their chlamydia species, we use pigs as a large biomedical animal model for chlamydia research. In this study, we used the pig model to develop a vaccine candidate against Ct. The vaccine candidate consists of TriAdj-adjuvanted chlamydial-protease-like activity factor (CPAF) protein. We tested two weekly administration options-twice intranasal (IN) followed by twice intramuscular (IM) and twice IM followed by twice IN. We assessed the humoral immune response in both serum using CPAF-specific IgG (including antibody avidity determination) and also in cervical and rectal swabs using CPAF-specific IgG and IgA ELISAs. The systemic T-cell response was analyzed following in vitro CPAF restimulation via IFN-γ and IL-17 ELISpots, as well as intracellular cytokine staining flow cytometry. Our data demonstrate that while the IN/IM vaccination mainly led to non-significant systemic immune responses, the vaccine candidate is highly immunogenic if administered IM/IN. This vaccination strategy induced high serum anti-CPAF IgG levels with strong avidity, as well as high IgA and IgG levels in vaginal and rectal swabs and in uterine horn flushes. In addition, this vaccination strategy prompted a pronounced cellular immune response. Besides inducing IL-17 production, the vaccine candidate induced a strong IFN-γ response with CD4 T cells. In IM/IN-vaccinated pigs, these cells also significantly downregulated their CCR7 expression, a sign of differentiation into peripheral-tissue-homing effector/memory cells. Conclusively, this study demonstrates the strong immunogenicity of the IM/IN-administered TriAdj-adjuvanted Ct CPAF vaccine candidate. Future studies will test the vaccine efficacy of this promising Ct vaccine candidate. In addition, this project demonstrates the suitability of the Cs pre-exposed outbred pig model for Ct vaccine development. Thereby, we aim to open the bottleneck of large animal models to facilitate the progression of Ct vaccine candidates into clinical trials.

2.
Front Cell Infect Microbiol ; 13: 1251135, 2023.
Article En | MEDLINE | ID: mdl-37662000

Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.


Chlamydia Infections , Humans , Pregnancy , Female , Virulence/genetics , Chlamydia trachomatis/genetics , Conjunctiva , Inflammation
3.
bioRxiv ; 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37577476

Chlamydia trachomatis (CT) is the most common bacterial sexually transmitted infection (STI) in the United States, despite effective antibiotics. Information regarding natural immunity to CT will inform vaccine design. The objectives of this study were to determine immune cell populations and functional features associated with reduced risk of CT reinfection or endometrial CT infection. PBMCs were collected from a cohort of CT-exposed women who were tested for CT and other STIs at the cervix and endometrium (to determine ascension) and were repeatedly tested over the course of a year (to determine reinfection). Mass cytometry identified major immune populations and T cell subsets. Women with CT had increased CD4+ effector memory T cells (TEM) compared to uninfected women. Specifically, Th2, Th17, and Th17 DN CD4+ TEM were increased. Th17 and Th17 DN CD4+ central memory T cells (TCM) were increased in women who did not experience follow-up CT infection, suggesting that these cells may be important for protection. These data indicate that peripheral T cells display distinct features that correlate with natural immunity to CT and suggest that the highly plastic Th17 lineage plays a role in protection against reinfection.

4.
Microbiol Spectr ; 11(4): e0468922, 2023 08 17.
Article En | MEDLINE | ID: mdl-37318345

We developed a reusable and open-source machine learning (ML) pipeline that can provide an analytical framework for rigorous biomarker discovery. We implemented the ML pipeline to determine the predictive potential of clinical and immunoproteome antibody data for outcomes associated with Chlamydia trachomatis (Ct) infection collected from 222 cis-gender females with high Ct exposure. We compared the predictive performance of 4 ML algorithms (naive Bayes, random forest, extreme gradient boosting with linear booster [xgbLinear], and k-nearest neighbors [KNN]), screened from 215 ML methods, in combination with two different feature selection strategies, Boruta and recursive feature elimination. Recursive feature elimination performed better than Boruta in this study. In prediction of Ct ascending infection, naive Bayes yielded a slightly higher median value of are under the receiver operating characteristic curve (AUROC) 0.57 (95% confidence interval [CI], 0.54 to 0.59) than other methods and provided biological interpretability. For prediction of incident infection among women uninfected at enrollment, KNN performed slightly better than other algorithms, with a median AUROC of 0.61 (95% CI, 0.49 to 0.70). In contrast, xgbLinear and random forest had higher predictive performances, with median AUROC of 0.63 (95% CI, 0.58 to 0.67) and 0.62 (95% CI, 0.58 to 0.64), respectively, for women infected at enrollment. Our findings suggest that clinical factors and serum anti-Ct protein IgGs are inadequate biomarkers for ascension or incident Ct infection. Nevertheless, our analysis highlights the utility of a pipeline that searches for biomarkers and evaluates prediction performance and interpretability. IMPORTANCE Biomarker discovery to aid early diagnosis and treatment using machine learning (ML) approaches is a rapidly developing area in host-microbe studies. However, lack of reproducibility and interpretability of ML-driven biomarker analysis hinders selection of robust biomarkers that can be applied in clinical practice. We thus developed a rigorous ML analytical framework and provide recommendations for enhancing reproducibility of biomarkers. We emphasize the importance of robustness in selection of ML methods, evaluation of performance, and interpretability of biomarkers. Our ML pipeline is reusable and open-source and can be used not only to identify host-pathogen interaction biomarkers but also in microbiome studies and ecological and environmental microbiology research.


Chlamydia Infections , Chlamydia trachomatis , Humans , Female , Bayes Theorem , Reproducibility of Results , Biomarkers , Immunoglobulin G , Genitalia , Machine Learning
5.
Tumori ; 109(6): NP11-NP13, 2023 Dec.
Article En | MEDLINE | ID: mdl-37165581

Electronic cigarette, or vaping, product use-associated lung injury (EVALI) is an increasingly recognized entity with the potential for severe pulmonary toxicity. We present the case of a young man first evaluated at a tertiary care center in the United States in 2019 with newly diagnosed testicular cancer with acute respiratory failure, which was initially attributed to possible metastatic disease but eventually determined to be related to EVALI. This case highlights the clinical features of EVALI, the potential diagnostic dilemma that can arise with EVALI when occurring in the setting of malignancy and the importance of inquiring about vaping use among patients with malignancy, especially in adolescents and young adults.


Electronic Nicotine Delivery Systems , Lung Injury , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Vaping , Male , Adolescent , Young Adult , Humans , United States , Lung Injury/diagnosis , Lung Injury/etiology , Lung Injury/therapy , Testicular Neoplasms/diagnosis , Testicular Neoplasms/etiology , Vaping/adverse effects , Neoplasms, Germ Cell and Embryonal/complications
6.
Infect Immun ; 91(2): e0039222, 2023 02 16.
Article En | MEDLINE | ID: mdl-36722979

Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.


Chlamydia Infections , Chlamydia trachomatis , Animals , Female , Mice , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/genetics , Chlamydia trachomatis/pathogenicity , Plasmids/genetics , Virulence/genetics
7.
Biometrics ; 79(2): 1187-1200, 2023 06.
Article En | MEDLINE | ID: mdl-35304917

Many biomedical studies collect data of mixed types of variables from multiple groups of subjects. Some of these studies aim to find the group-specific and the common variation among all these variables. Even though similar problems have been studied by some previous works, their methods mainly rely on the Pearson correlation, which cannot handle mixed data. To address this issue, we propose a latent mixed Gaussian copula (LMGC) model that can quantify the correlations among binary, ordinal, continuous, and truncated variables in a unified framework. We also provide a tool to decompose the variation into the group-specific and the common variation over multiple groups via solving a regularized M-estimation problem. We conduct extensive simulation studies to show the advantage of our proposed method over the Pearson correlation-based methods. We also demonstrate that by jointly solving the M-estimation problem over multiple groups, our method is better than decomposing the variation group by group. We also apply our method to a Chlamydia trachomatis genital tract infection study to demonstrate how it can be used to discover informative biomarkers that differentiate patients.


Biological Variation, Individual , Biomedical Research , Normal Distribution , Humans , Chlamydia trachomatis , Chlamydia Infections , Computer Simulation , Reproductive Tract Infections , Biomedical Research/statistics & numerical data
8.
Front Immunol ; 13: 1001255, 2022.
Article En | MEDLINE | ID: mdl-36248887

Objectives: Identify genetic loci of enhanced susceptibility to Chlamydial trachomatis (Ct) upper genital tract infection in women. Methods: We performed an integrated analysis of DNA genotypes and blood-derived mRNA profiles from 200 Ct-exposed women to identify expression quantitative trait loci (eQTL) and determine their association with endometrial chlamydial infection using a mediation test. We further evaluated the effect of a lead eQTL on the expression of CD151 by immune cells from women with genotypes associated with low and high whole blood expression of CD151, respectively. Results: We identified cis-eQTLs modulating mRNA expression of 81 genes (eGenes) associated with altered risk of ascending infection. In women with endometrial infection, eGenes involved in proinflammatory signaling were upregulated. Downregulated eGenes included genes involved in T cell functions pivotal for chlamydial control. eGenes encoding molecules linked to metabolism of tryptophan, an essential chlamydial nutrient, and formation of epithelial tight junctions were also downregulated in women with endometrial infection. A lead eSNP rs10902226 was identified regulating CD151, a tetrospanin molecule important for immune cell adhesion and migration and T cell proliferation. Further in vitro experiments showed that women with a CC genotype at rs10902226 had reduced rates of endometrial infection with increased CD151 expression in whole blood and T cells when compared to women with a GG genotype. Conclusions: We discovered genetic variants associated with altered risk for Ct ascension. A lead eSNP for CD151 is a candidate genetic marker for enhanced CD4 T cell function and reduced susceptibility.


Chlamydia Infections , Chlamydia trachomatis , Chlamydia Infections/genetics , Female , Genetic Markers , Genetic Predisposition to Disease , Humans , Quantitative Trait Loci , RNA, Messenger , T-Lymphocytes , Tryptophan
9.
Clin Infect Dis ; 74(Suppl_2): S112-S126, 2022 04 13.
Article En | MEDLINE | ID: mdl-35416965

To prepare for the development of the 2021 Centers for Disease Control and Prevention (CDC) sexually transmitted infections treatment guidelines, the CDC convened a committee of expert consultants in June 2019 to discuss recent abstracts and published literature on the epidemiology, diagnosis, and management of sexually transmitted infections.This paper summarizes the key questions, evidence, and recommendations for the diagnosis and management of uncomplicated Chlamydia trachomatis (CT) infections in adolescents and adults that were reviewed and discussed for consideration in developing the guidelines. The evidence reviewed mostly focused on efficacy of doxycycline and azithromycin for urogenital, rectal, and oropharyngeal CT infection, CT risk factors in women, performance of CT nucleic acid amplification tests on self-collected meatal specimens in men, and performance of newer CT point-of-care tests.


Chlamydia Infections , Sexually Transmitted Diseases , Adolescent , Adult , Azithromycin/therapeutic use , Centers for Disease Control and Prevention, U.S. , Chlamydia Infections/diagnosis , Chlamydia Infections/drug therapy , Chlamydia Infections/epidemiology , Chlamydia trachomatis , Female , Humans , Male , Sexually Transmitted Diseases/prevention & control , United States/epidemiology
10.
Biometrics ; 78(1): 364-375, 2022 03.
Article En | MEDLINE | ID: mdl-33316078

To elucidate the molecular mechanisms underlying genetic variants identified from genome-wide association studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union test approach combined with the likelihood ratio test to detect mediation effect of multiple genetic variants via some mediator (e.g., the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed methods and substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia trachomatis infection further showcase advantages of our methods. We believe our proposed methods will be of value and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype for new drug discovery and personalized medicine.


Genome-Wide Association Study , Polymorphism, Single Nucleotide , Algorithms , Genome-Wide Association Study/methods , Phenotype , Probability
11.
J Infect Dis ; 225(5): 846-855, 2022 03 02.
Article En | MEDLINE | ID: mdl-34610131

BACKGROUND: Previous research revealed antibodies targeting Chlamydia trachomatis elementary bodies was not associated with reduced endometrial or incident infection in C. trachomatis-exposed women. However, data on the role of C. trachomatis protein-specific antibodies in protection are limited. METHODS: A whole-proteome C. trachomatis array screening serum pools from C. trachomatis-exposed women identified 121 immunoprevalent proteins. Individual serum samples were probed using a focused array. Immunoglobulin (Ig) G antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon rank sum test. The impact of the breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA sequencing quantified C. trachomatis gene transcripts in cervical swab samples from infected women. RESULTS: IgG to pGP3 and CT_005 were associated with reduced endometrial infection; anti-CT_443, anti-CT_486, and anti-CT_123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. Messenger RNAs for immunoprevalent C. trachomatis proteins were highly abundant in the cervix. CONCLUSIONS: Protein-specific C. trachomatis antibodies are not sufficient to protect against ascending or incident infection. However, cervical C. trachomatis gene transcript abundance positively correlates with C. trachomatis protein immunogenicity. These abundant and broadly recognized antigens are viable vaccine candidates.


Chlamydia Infections , Chlamydia trachomatis , Antibodies, Bacterial , Female , Humans , Immunoglobulin G , Reinfection
12.
Pathogens ; 10(10)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34684219

Chlamydia trachomatis (Ct) causes the most prevalent bacterial sexually transmitted disease leading to ectopic pregnancy and infertility. Swine not only have many similarities to humans, but they are also susceptible to Ct. Despite these benefits and the ease of access to primary tissue from this food animal, in vitro research in swine has been underutilized. This study will provide basic understanding of the Ct host-pathogen interactions in porcine oviduct epithelial cells (pOECs)-the counterparts of human Fallopian tube epithelial cells. Using NanoString technology, flow cytometry, and confocal and transmission-electron microscopy, we studied the Ct developmental cycle in pOECs, the cellular immune response, and the expression and location of the tight junction protein claudin-4. We show that Ct productively completes its developmental cycle in pOECs and induces an immune response to Ct similar to human cells: Ct mainly induced the upregulation of interferon regulated genes and T-cell attracting chemokines. Furthermore, Ct infection induced an accumulation of claudin-4 in the Ct inclusion with a coinciding reduction of membrane-bound claudin-4. Downstream effects of the reduced membrane-bound claudin-4 expression could potentially include a reduction in tight-junction expression, impaired epithelial barrier function as well as increased susceptibility to co-infections. Thereby, this study justifies the investigation of the effect of Ct on tight junctions and the mucosal epithelial barrier function. Taken together, this study demonstrates that primary pOECs represent an excellent in vitro model for research into Ct pathogenesis, cell biology and immunity.

13.
J Infect Dis ; 224(12 Suppl 2): S64-S71, 2021 08 16.
Article En | MEDLINE | ID: mdl-34396400

BACKGROUND: Chlamydia trachomatis (Ct) infection ascending to the upper genital tract can cause infertility. Direct association of genetic variants as contributors is challenging because infertility may not be diagnosed until years after infection. Investigating the intermediate trait of ascension bridges this gap. METHODS: We identified infertility genome-wide association study (GWAS) loci using deoxyribonucleic acid from Ct-seropositive cisgender women in a tubal factor infertility study and Ct-infected cisgender women from a longitudinal pelvic inflammatory disease cohort with known fertility status. Deoxyribonucleic acid and blood messenger ribonucleic acid from 2 additional female cohorts with active Ct infection and known endometrial infection status were used to investigate the impact of infertility single-nucleotide polymorphisms (SNPs) on Ct ascension. A statistical mediation test examined whether multiple infertility SNPs jointly influenced ascension risk by modulating expression of mediator genes. RESULTS: We identified 112 candidate infertility GWAS loci, and 31 associated with Ct ascension. The SNPs altered chlamydial ascension by modulating expression of 40 mediator genes. Mediator genes identified are involved in innate immune responses including type I interferon production, T-cell function, fibrosis, female reproductive tract health, and protein synthesis and degradation. CONCLUSIONS: We identified Ct-related infertility loci and their potential functional effects on Ct ascension.


Chlamydia Infections/complications , Chlamydia trachomatis/genetics , Infertility, Female/genetics , Infertility, Female/microbiology , Infertility/microbiology , Chlamydia Infections/genetics , DNA , Female , Genome-Wide Association Study , Host Microbial Interactions , Humans , Polymorphism, Single Nucleotide , Risk Factors
14.
J Infect Dis ; 224(12 Suppl 2): S39-S46, 2021 08 16.
Article En | MEDLINE | ID: mdl-34396413

Pelvic inflammatory disease (PID) results from ascension of sexually transmitted pathogens from the lower genital tract to the uterus and/or fallopian tubes in women, with potential spread to neighboring pelvic organs. Patients may present acutely with lower abdominal or pelvic pain and pelvic organ tenderness. Many have subtle symptoms or are asymptomatic and present later with tubal factor infertility, ectopic pregnancy, or chronic pelvic pain. Neisseria gonorrhoeae and Chlamydia trachomatis are the 2 most commonly recognized PID pathogens. Their ability to survive within host epithelial cells and neutrophils highlights a need for T-cell-mediated production of interferon γ in protection. Data indicate that for both pathogens, antibody can accelerate clearance by enhancing opsonophagocytosis and bacterial killing when interferon γ is present. A study of women with N. gonorrhoeae- and/or C. trachomatis-induced PID with histologic endometritis revealed activation of myeloid cell, cell death, and innate inflammatory pathways in conjunction with dampening of T-cell activation pathways. These findings are supported by multiple studies in mouse models of monoinfection with N. gonorrhoeae or Chlamydia spp. Both pathogens exert multiple mechanisms of immune evasion that benefit themselves and each other at the expense of the host. However, similarities in host immune mechanisms that defend against these 2 bacterial pathogens instill optimism for the prospects of a combined vaccine for prevention of PID and infections in both women and men.


Chlamydia Infections/complications , Chlamydia trachomatis/isolation & purification , Gonorrhea/complications , Neisseria gonorrhoeae/isolation & purification , Pelvic Inflammatory Disease/microbiology , Female , Humans , Immune Evasion , Interferon-gamma , Pelvic Inflammatory Disease/diagnosis , Pelvic Inflammatory Disease/epidemiology , Pelvic Pain/etiology , Pregnancy
15.
Infect Immun ; 89(10): e0007221, 2021 09 16.
Article En | MEDLINE | ID: mdl-34125599

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with Toll-like receptor (TLR) signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 to immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3-/- mice had no difference in chlamydial burden or duration of lower-genital-tract infection. We also observed a similar incidence of hydrosalpinx 45 days postinfection in trem1,3-/- compared to wild-type (WT) mice. However, compared to WT mice, trem1,3-/- mice developed significantly fewer hydrometra in uterine horns. Early in infection, trem1,3-/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased granulocyte colony-stimulating factor (G-CSF). trem1,3-/- mice also had reduced erosion of the luminal epithelium. These data indicate that TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the occurrence of hydrometra in infected mice.


Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Receptors, Immunologic/immunology , Triggering Receptor Expressed on Myeloid Cells-1/immunology , Uterus/immunology , Adaptive Immunity/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Cell Movement/immunology , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/immunology , Disease Models, Animal , Epithelium/immunology , Epithelium/metabolism , Epithelium/microbiology , Female , Genitalia, Female/immunology , Genitalia, Female/metabolism , Genitalia, Female/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Oviducts/immunology , Oviducts/metabolism , Oviducts/microbiology , Receptors, Immunologic/metabolism , Reproductive Tract Infections/immunology , Reproductive Tract Infections/metabolism , Reproductive Tract Infections/microbiology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Uterus/metabolism , Uterus/microbiology
16.
Expert Rev Vaccines ; 20(4): 421-435, 2021 04.
Article En | MEDLINE | ID: mdl-33682583

INTRODUCTION: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED: We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION: The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.


Chlamydia Infections , Chlamydia trachomatis , Adjuvants, Immunologic , Animals , Antibodies, Bacterial , Bacterial Vaccines , Chlamydia Infections/prevention & control , Chlamydia trachomatis/immunology , Genitalia
17.
Clin Infect Dis ; 72(7): 1181-1189, 2021 04 08.
Article En | MEDLINE | ID: mdl-32052831

BACKGROUND: Anaerobic organisms are important pathogens in acute pelvic inflammatory disease (PID). The currently recommended PID regimen of a single dose of ceftriaxone and doxycycline for 14 days has limited anaerobic activity. The need for broader anaerobic coverage is unknown and concerns have been raised about metronidazole tolerability. METHODS: We conducted a randomized, double-blind, placebo-controlled trial comparing ceftriaxone 250 mg intramuscular single dose and doxycycline for 14 days, with or without 14 days of metronidazole in women with acute PID. The primary outcome was clinical improvement at 3 days following enrollment. Additional outcomes at 30 days following treatment were the presence of anaerobic organisms in the endometrium, clinical cure (absence of fever and reduction in tenderness), adherence, and tolerability. RESULTS: We enrolled 233 women (116 to metronidazole and 117 to placebo). Clinical improvement at 3 days was similar between the 2 groups. At 30 days following treatment, anaerobic organisms were less frequently recovered from the endometrium in women treated with metronidazole than placebo (8% vs 21%, P < .05) and cervical Mycoplasma genitalium was reduced (4% vs 14%, P < .05). Pelvic tenderness was also less common among women receiving metronidazole (9% vs 20%, P < .05). Adverse events and adherence were similar in each treatment group. CONCLUSIONS: In women treated for acute PID, the addition of metronidazole to ceftriaxone and doxycycline was well tolerated and resulted in reduced endometrial anaerobes, decreased M. genitalium, and reduced pelvic tenderness compared to ceftriaxone and doxycycline. Metronidazole should be routinely added to ceftriaxone and doxycycline for the treatment of women with acute PID. CLINICAL TRIALS REGISTRATION: NCT01160640.


Mycoplasma genitalium , Pelvic Inflammatory Disease , Anti-Bacterial Agents/adverse effects , Ceftriaxone/adverse effects , Doxycycline/therapeutic use , Female , Humans , Metronidazole/therapeutic use , Pelvic Inflammatory Disease/drug therapy
18.
J Immunol ; 205(11): 3037-3049, 2020 12 01.
Article En | MEDLINE | ID: mdl-33087404

Chlamydia trachomatis infection of the female genital tract can lead to irreversible fallopian tube scarring. In the mouse model of genital infection using Chlamydia muridarum, IL-1R signaling plays a critical role in oviduct tissue damage. In this study, we investigated the pathologic role of IL-1α, one of the two proinflammatory cytokines that bind to IL-1R. Il1a-/- mice infected with C. muridarum cleared infection at their cervix at the same rate as wild-type (WT) mice, but were significantly protected from end point oviduct damage and fibrosis. The contribution of IL-1α to oviduct pathology was more dramatic than observed in mice deficient for IL-1ß. Although chlamydial burden was similar in WT and Il1a-/- oviduct during peak days of infection, levels of IL-1ß, IL-6, CSF3, and CXCL2 were reduced in Il1a-/- oviduct lysates. During infection, Il1a-/- oviducts and uterine horns exhibited reduced neutrophil infiltration, and this reduction persisted after the infection resolved. The absence of IL-1α did not compromise CD4 T cell recruitment or function during primary or secondary chlamydial infection. IL-1α is expressed predominantly by luminal cells of the genital tract in response to infection, and low levels of expression persisted after the infection cleared. Ab-mediated depletion of IL-1α in WT mice prevented infection-induced oviduct damage, further supporting a key role for IL-1α in oviduct pathology.


Chlamydia Infections/metabolism , Genitalia, Female/metabolism , Interleukin-1alpha/metabolism , Oviducts/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Cervix Uteri/metabolism , Cervix Uteri/microbiology , Chlamydia Infections/microbiology , Chlamydia muridarum/pathogenicity , Disease Models, Animal , Female , Genitalia, Female/microbiology , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/physiology , Oviducts/microbiology , Reproductive Tract Infections/metabolism , Reproductive Tract Infections/microbiology
19.
Infect Immun ; 88(9)2020 08 19.
Article En | MEDLINE | ID: mdl-32601108

Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.


Epithelial Cells/immunology , Gene Expression Regulation/immunology , Host Microbial Interactions/immunology , T-Lymphocytes/immunology , Adult , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Biomarkers/metabolism , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokine CXCL11/genetics , Chemokine CXCL11/immunology , Chlamydia Infections/genetics , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia trachomatis/growth & development , Chlamydia trachomatis/immunology , Epithelial Cells/microbiology , Fallopian Tubes/cytology , Fallopian Tubes/surgery , Female , Fusion Regulatory Protein 1, Heavy Chain/genetics , Fusion Regulatory Protein 1, Heavy Chain/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Host Microbial Interactions/genetics , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Models, Biological , Primary Cell Culture , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Receptors, Transferrin/genetics , Receptors, Transferrin/immunology , Salpingectomy , T-Lymphocytes/microbiology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology , Interferon gamma Receptor
20.
Vaccines (Basel) ; 8(3)2020 Jul 02.
Article En | MEDLINE | ID: mdl-32630694

Chlamydia trachomatis (Ct) infections are the most frequent bacterial sexually transmitted disease, and they can lead to ectopic pregnancy and infertility. Despite these detrimental long-term sequelae, a vaccine is not available. Success in preclinical animal studies is essential for vaccines to move to human clinical trials. Pigs are the natural host to Chlamydia suis (Cs)-a chlamydia species closely related to Ct, and are susceptible to Ct, making them a valuable animal model for Ct vaccine development. Before making it onto market, Ct vaccine candidates must show efficacy in a high-risk human population. The high prevalence of human Ct infection combined with the fact that natural infection does not result in sterilizing immunity, results in people at risk likely having been pre-exposed, and thus having some level of underlying non-protective immunity. Like human Ct, Cs is highly prevalent in outbred pigs. Therefore, the goal of this study was to model a trial in pre-exposed humans, and to determine the immunogenicity and efficacy of intranasal Cs vaccination in pre-exposed outbred pigs. The vaccine candidates consisted of UV-inactivated Cs particles in the presence or absence of an adjuvant (TriAdj). In this study, both groups of vaccinated pigs had a lower Cs burden compared to the non-vaccinated group; especially the TriAdj group induced the differentiation of CD4+ cells into tissue-trafficking CCR7- IFN-γ-producing effector memory T cells. These results indicate that Cs vaccination of pre-exposed pigs effectively boosts a non-protective immune response induced by natural infection; moreover, they suggest that a similar approach could be applied to human vaccine trials.

...