Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
2.
Sci Rep ; 12(1): 15634, 2022 Sep 17.
Article En | MEDLINE | ID: mdl-36115867

This paper threw some light on the behavior of Sodium N,N-Dimethyldithiocarbamate as an electrolyte. The effect of solvents on the conductance of this salt would be discussed via measurements of Λo, ao and KA, since it can be assumed that the different solvents have a little chance to impose great variations on the solvation processes. The conductance method was chosen as a tool to illustrate the electrolyte-solvent interactions. Fuoss-Onsager equation would be tested using Sodium Dimethyldithiocarbamate in presence of dimethylformamide solvent at different temperatures. The conductance of dilute solutions of Sodium N,N-Dimethyldithiocarbamate is measured in Dimethylformamide, at different temperatures (25, 30, 35 and 40 °C). Accurate values of Λo were obtained by applying the (Fuoss-Kraus-Shedlovsky) equation. Finally, the (Fuoss-Onsager) equation was solved to give the correct values of the constants Λo, J, KA and a° (the closest distance of approach) for Sodium N,N-Dimethyldithiocarbamate salt in Dimethylformamide solvent. Λo and a° (solvation) increase with increasing temperatures. Thermodynamic parameters (∆G°, ∆H°, ∆S° and ∆Es) of Sodium N,N-Dimethyldithiocarbamate in Dimethylformamide were calculated from conductance measurements, the activation energy (∆Es), the enthalpy change (heat of association) (∆H°) and the entropy change (∆S°) are positive, however The free energy change (∆G°) values was negative for Sodium N,N-Dimethyl dithiocarbamate in DMF systems studied with increasing the temperature.


Dimethylformamide , Sodium , Dimethyldithiocarbamate , Electric Conductivity , Electrolytes , Ions , Solvents , Temperature , Thermodynamics
3.
Heliyon ; 7(2): e06315, 2021 Feb.
Article En | MEDLINE | ID: mdl-33681500

Removal of high concentrations of toxic heavy metals from wastewater is very important within the environmental field because heavy metals pollution a serious environmental problem due to them being nonbiodegradable. This study shed some light on the use of Nano bentonite as an adsorbent for the elimination of Iron, Zinc, and Nickel ions from wastewater, and the optimum conditions were evaluated to find out thermodynamic and kinetic parameters and equilibrium adsorption models have been applied. The results showed that adsorption percentage increases with increasing temperature, speed of rotation, and volume of solution, but decreases with adsorbent dose and initial concentration increase. The adsorption process has fit pseudo-second-order kinetic model Langmuir and Freundlich adsorption isotherm models were applied to analyze adsorption data and both were found to apply to these adsorption processes. Thermodynamic parameters e.g., ΔGo, ΔSo, and ΔHo of the adsorption process were found to be endothermic. Finally, the Nano bentonite was observed to be more powerful for the removal of Fe (III), Zn (II), and Ni (II) at the same experimental conditions.

...