Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(5): 3335-3345, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38259985

RESUMEN

This work examined the influence of zirconium concentration on barium titanate (BZT) BaZrxTi1-xO3, with (x = 0, 0.15, 0.50, 0.75, and 1), produced by the tartrate precursor technique. The Fourier transform infrared (FTIR) spectra support the X-ray diffraction (XRD) results regarding formation of the perovskite structure. Grain size grows with Zr concentration, suggesting that the presence of Zr ions enlarges the grains. The transmission electron microscopy (TEM) images demonstrated that, due to their nano size, nanocrystallites are agglomerated in most images with irregular morphologies and average particle sizes from 20.75 nm to 63.75 nm. Increasing Zr content diminished the piezoelectric coefficient (d33) and the grain size. The value of d33 decreases by increasing Zr content, and there is an inverse relationship between grain size and d33. The remnant polarization of BZT increases with increasing Zr4+ content, which may be suitable for permanent memory device applications.

2.
Heliyon ; 9(9): e19745, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809960

RESUMEN

Magnesium ferrite (MgFe2O4) and polyethylene glycol (PEG) are materials known for their versatility in various applications. This study presents a comprehensive comparative analysis of the electrical conductivity and dielectric relaxation of nanostructured MgFe2O4 and its composites with PEG. Through experimentation, it was observed that incorporating PEG into MgFe2O4 did not lead to a high relative observed decrease or increase in electrical conductivity at room temperature. The study revealed that the composites maintained stable electrical behavior at room temperature, with a dielectric constant value of around 9 and a loss tangent value of around 0.1 at high frequency (around 7 MHz). The electron-hole hopping mechanism was identified as the underlying cause for the strong dielectric dispersion with frequency. The low dielectric loss and conductivity of the MgFe2O4 and PEG/ferrite composites make them promising candidates for high-frequency switching applications and microelectronic devices, particularly in scenarios where negligible eddy currents are essential. Additionally, complex impedance data analysis demonstrated that the capacitive and resistive properties of the composites are primarily attributed to grain boundary processes. This study provides a comprehensive analysis of the electrical and dielectric properties of MgFe2O4 and PEG composites and highlights their potential for many applications in materials science, particularly in electrical and electronic devices.

3.
RSC Adv ; 13(38): 26879-26891, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37692354

RESUMEN

Nanosized spinel ferrites Co1-xNixFe2O4 (where x = 0.0-1.0) or CNFO have been produced using a chemical method. The crystal structure's characteristics have been determined through the utilization of X-ray diffraction (XRD). It has been demonstrated that all samples have a single phase with cubic syngony (space group Fd3̄m). The lattice parameter and unit cell volume behavior correlate well with the average ionic radii of Co2+ and Ni2+ ions and their coordination numbers. Thus, an increase in the Ni2+ content from x = 0.0 to x = 1.0 leads to a decrease in the lattice parameter (from 8.3805 to 8.3316 Å) and unit cell volume (from 58.86 to 57.83 Å3). Elastic properties have been investigated using Fourier transform infrared (FTIR) analysis. The peculiarities of the microwave properties have been analyzed by the measured S-parameters in the range of 8-18 GHz. It was assumed that the energy losses due to reflection are a combination of electrical and magnetic losses due to polarization processes (dipole polarization) and magnetization reversal processes in the region of inter-resonant processes. A significant attenuation of the reflected wave energy (-10 … -21.8 dB) opens broad prospects for practical applications.

4.
Nanomaterials (Basel) ; 12(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36234580

RESUMEN

In this study, SrFe12-xNdxO19, where x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, was prepared using high-energy ball milling. The prepared samples were characterized by X-ray diffraction (XRD). Using the XRD results, a comparative analysis of crystallite sizes of the prepared powders was carried out by different methods (models) such as the Scherrer, Williamson-Hall (W-H), Halder-Wagner (H-W), and size-strain plot (SSP) method. All the studied methods prove that the average nanocrystallite size of the prepared samples increases by increasing the Nd concentration. The H-W and SSP methods are more accurate than the Scherer or W-H methods, suggesting that these methods are more suitable for analyzing the XRD spectra obtained in this study. The specific saturation magnetization (σs), the effective anisotropy constant (Keff), the field of magnetocrystalline anisotropy (Ha), and the field of shape anisotropy (Hd) for SrFe12-xNdxO19 (0 ≤ x ≤ 0.5) powders were calculated. The coercivity (Hc) increases (about 9% at x = 0.4) with an increasing degree of substitution of Fe3+ by Nd3+, which is one of the main parameters for manufacturing permanent magnets.

5.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35745337

RESUMEN

Nanocomposite films based on spinel ferrite (Mg0.8Zn0.2Fe1.5Al0.5O4) in a PVA matrix were obtained. An increase in the spinel concentration to 10 wt.% caused an avalanche-like rise in roughness due to the formation of nanoparticle agglomerates. The lateral mode of atomic force microscopy (AFM) allowed us to trace the agglomeration dynamics. An unexpected result was that the composite with 6 wt.% of filler had a low friction coefficient in comparison with similar composites due to the successfully combined effects of low roughness and surface energy. The friction coefficient decreased to 0.07 when the friction coefficient of pure PVA was 0.72. A specially developed method for measuring nano-objects' surface energy using AFM made it possible to explain the anomalous nature of the change in tribological characteristics.

6.
Nanomaterials (Basel) ; 12(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407163

RESUMEN

Using the auto combustion flash method, Ni1-x+2Mgx+2Fe2+3O4 (x = 0, 0.2, 0.6, 0.8 and 1) nano-ferrites were synthesized. All samples were thermally treated at 973 K for 3 h. The structural analysis for the synthesized samples was performed using XRD, high-resolution transmission electron microscopy (HRTEM), and FTIR. Scanning electron microscopy (SEM) was undertaken to explore the surface morphology of all the samples. The thermal stability of these samples was investigated using thermogravimetric analysis (TGA). XRD data show the presence of a single spinel phase for all the prepared samples. The intensity of the principal peak of the spinel phase decreases as Mg content increases, showing that Mg delays crystallinity. The Mg content raised the average grain size (D) from 0.084 µm to 0.1365 µm. TGA shows two stages of weight loss variation. The vibrating sample magnetometer (VSM) measurement shows that magnetic parameters, such as initial permeability (µi) and saturation magnetization (Ms), decay with rising Mg content. The permeability and magnetic anisotropy at different frequencies and temperatures were studied to show the samples' magnetic behavior and determine the Curie temperature (TC), which depends on the internal structure. The electrical resistivity behavior shows the semi-conductivity trend of the samples. Finally, the dielectric constant increases sharply at high temperatures, explained by the increased mobility of charge carriers, and decreases with increasing frequency.

7.
Nanomaterials (Basel) ; 12(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35407221

RESUMEN

The rapid development of industries discharges huge amounts of wastewater that contain surface water. For this reason, we used NiO/polydopamine (NiO/PDA) nanocomposite as an efficient material for the removal of Methyl violet 2B from water. It was synthesized and then characterized by Fourier Transform Infrared (FT-IR) spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) analysis, Transmission Electron Microscopy (TEM), and Brunauer-Emmett-Teller (BET). The EDX analysis confirmed the presence of O, Ni, N, and C. The composite has an average particle size of 18 nm. Its surface area is 110.591 m2/g. It was found that the efficiency of dye removal by adsorption on NiO/PDA exceeded that of bare NiO. The adsorption capacity of NiO and NiO/PDA are 126 and 284 mg/g, respectively. The effects of adsorbent dose, dye concentration, and pH on the removal efficiency were examined. The efficiency increased with increasing the adsorbent dose and pH, but dropped from 85 to 73% within 30 min as the initial dye concentration was increased from 0.984 to 4.92 mg/L. Such a drop in the removal efficiency is due to the blocking of the surface-active sites of NiO/PDA, with the high population of dye molecules derived from the continuous increase in dye concentration. The adsorption results of the dye fitted well with the pseudo-second-order kinetics and Langmuir isotherm. The reusability data showed that NiO/PDA was stable across three adsorption-regeneration cycles, thus it can be considered a good recyclable and efficient adsorbent. Because of these results, it can be considered that this method can be applied for the treatment of wastewater.

8.
Nanomaterials (Basel) ; 12(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269356

RESUMEN

Binary and ternary composites (CM) based on M-type hexaferrite (HF), polymer matrix (PVDF) and carbon nanomaterials (quasi-one-dimensional carbon nanotubes-CNT and quasi-two-dimensional carbon nanoflakes-CNF) were prepared and investigated for establishing the impact of the different nanosized carbon on magnetic and electrodynamic properties. The ratio between HF and PVDF in HF + PVDF composite was fixed (85 wt% HF and 15 wt% PVDF). The concentration of CNT and CNF in CM was fixed (5 wt% from total HF + PVDF weight). The phase composition and microstructural features were investigated using XRD and SEM, respectively. It was observed that CM contains single-phase HF, γ- and ß-PVDF and carbon nanomaterials. Thus, we produced composites that consist of mixed different phases (organic insulator matrix-PDVF; functional magnetic fillers-HF and highly electroconductive additives-CNT/CNF) in the required ratio. VSM data demonstrate that the main contribution in main magnetic characteristics belongs to magnetic fillers (HF). The principal difference in magnetic and electrodynamic properties was shown for CNT- and CNF-based composites. That confirms that the shape of nanosized carbon nanomaterials impact on physical properties of the ternary composited-based magnetic fillers in polymer dielectric matrix.

9.
Nanomaterials (Basel) ; 12(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35335743

RESUMEN

As a contribution to the graphene-based nanoferrite composites, this article is intended to present Mn, Co, and Co-Mn nanoferrites for the preparation and investigation of such samples. Nanoparticles of Co ferrite, Mn ferrite, and Co-Mn ferrite were chemically synthesized by the coprecipitation method. The composites of ferrite/graphene were made by incorporating weight ratios of 25% graphene to 75% ferrite. Various structural and characterizing investigations of ferrite samples and ferrite/graphene composites were performed, including XRD, EDX, SEM, VSM hysteresis loops, AC conductivity, and dielectric behavior. The investigations ensured the formation of the intended nanoferrite powders, each having a single-phase crystal structure with no undesired phases or elements. All samples exhibit a soft magnetic behavior. They show a semiconducting behavior of AC electrical conductivity as well. This was proved by the temperature dependence of the AC's electrical conductivity. Whereas the dielectric function and loss tangent show an expected, well-explained behavior, the ferrite/graphene composite samples have lower saturation magnetization values, lower AC conductivity, and dielectric constant values than the pure ferrites but still have the same behavior trends as those of the pure ferrites. The values obtained may represent steps on developing new materials for expected applications, such as manufacturing supercapacitors and/or improved battery electrodes.

10.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921115

RESUMEN

La-, Nd- and La/Nd-based polysubstituted high-entropy oxides (HEOs) were produced by solid-state reactions. Composition of the B-site was fixed for all samples (Cr0.2Mn0.2Fe0.2Co0.2Ni0.2) with varying of A-site cation (La, Nd and La0.5Nd0.5). Nominal chemical composition of the HEOs correlates well with initial calculated stoichiometry. All produced samples are single phase with perovskite-like structure. Average particle size is critically dependent on chemical composition. Minimal average particle size (~400 nm) was observed for the La-based sample and maximal average particle size (5.8 µm) was observed for the Nd-based sample. The values of the configurational entropy of mixing for each sample were calculated. Electrical properties were investigated in the wide range of temperatures (150-450 K) and frequencies (10-1-107 Hz). Results are discussed in terms of the variable range hopping and the small polaron hopping mechanisms. Magnetic properties were analyzed from the temperature and field dependences of the specific magnetization. The frustrated state of the spin subsystem was observed, and it can be a result of the increasing entropy state. From the Zero-Field-Cooling and Field-Cooling regimes (ZFC-FC) curves, we determine the average and Smax maximum size of a ferromagnetic nanocluster in a paramagnetic matrix. The average size of a ferromagnetic cluster is ~100 nm (La-CMFCNO) and ~60 nm (LN-CMFCNO). The Smax maximum size is ~210 nm (La-CMFCNO) and ~205 nm (LN-CMFCNO). For Nd-CMFCNO, spin glass state (ferromagnetic cluster lower than 30 nm) was observed due to f-d exchange at low temperatures.

11.
Nanomaterials (Basel) ; 10(3)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182785

RESUMEN

A pure ferrite and epoxy samples as well as the epoxy/ferrite composites with different 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% weight ferrite contents have been prepared by the chemical co-precipitation method. AC-conductivity and dielectric properties such as the dielectric constant and dielectric loss of the prepared samples have been studied. The obtained results showed that the samples had a semiconductor behavior. The dielectric constant of the composites has been calculated theoretically using several models. For the composite sample that contains 20 wt.% of ferrites, these models give satisfactory compliance, while for the composite samples with a higher percentage of nanofillers, more than 30 wt.% theoretical results do not coincide with experimental data. The investigated polymer has very low conductivity, so this type of polymer can be useful for high-frequency applications, which can reduce the losses caused by eddy current. Thus, the prepared samples are promising materials for practical use as elements of microwave devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...