Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Life Sci ; 293: 120308, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35016878

AIMS: Metformin hydrochloride is a highly hydrophilic molecule with low permeability. In the present study, to develop an effective drug to treat the metastatic breast cancer, metformin caprylic acid was synthesized using metformin hydrochloride as a permeable agent. MAIN METHODS: The cytotoxic effects of various concentrations of metformin caprylic acid and metformin hydrochloride (0 to 20 mM) on MCF-7 and MDA-MB-231 breast cancer cells and MCF-10A human mammary epithelial cell line were assessed by the MTT assay. Furthermore, Annexin V, PI staining, and cell flow cytometry assays were performed to evaluate the apoptotic effects. The invasion and migration ability of these cells were evaluated following treatment with equal concentration (3 mM) of the two compounds. KEY FINDINGS: The treatment of tested cell lines with an equal concentration of two chemicals decreased cell viability in a time and dose-dependent manner, where in all cases, metformin caprylic acid caused significantly more apoptosis and invasion inhibition than that of metformin hydrochloride (*p < 0.05). Chemical structures of both compounds were confirmed by FTIR and 1H NMR, 13C NMR. Both chemicals inhibited the migration of MCF-7 and MCF-10A cells, but had no effect on MDA-MB-231 migration. All data are expressed as mean ± SD (n = 3). SIGNIFICANCE: It seems that in an equal concentration, the similarity of the hydrophobic tail of caprylic acid to the cell membrane improves its entrance, while decreasing the drug excretion.


Breast Neoplasms/metabolism , Caprylates/chemical synthesis , Caprylates/pharmacokinetics , Metformin/chemical synthesis , Metformin/pharmacokinetics , Breast Neoplasms/pathology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells
2.
Mol Biol Rep ; 48(1): 139-146, 2021 Jan.
Article En | MEDLINE | ID: mdl-33400073

Aptamers as potential alternatives for antibodies could be employed against hepatitis B surface antigen (HBsAg), the great hallmark and first serological marker in HBV, for further theragnostic applications. Therefore, isolation HBsAg specific aptamer was performed in this study with a modified Cell-SELEX method. HEK293T overexpressing HBsAg and HEK293T as target and control cells respectively, were incubated with single-stranded rounds of DNA library during six SELEX and Counter SELEX rounds. Here, we introduced the new modified Cell-SELEX using deoxyribonuclease I digestion to separate single stranded DNA aptamers against the HBsAg. Characterization and evaluation of selected sequences were performed using flow cytometry analysis. The results led to isolation of 15 different ssDNA clones in six rounds of selection which were categorized to four clusters based on common structural motifs. The evaluation of SELEX progress showed growth in aptamer affinity with increasing in the cycle number. Taken together, the application of modified cell-SELEX demonstrated the isolation of HBsAg-specific ssDNA aptamers with proper affinity. Modified cell-SELEX as an efficient method can shorten the selection procedure and increase the success rate while the benefits of cell-based SELEX will be retained. Selected aptamers could be applied in purification columns, diagnostic kits, and drug delivery system against HBV-related liver cancer.


Aptamers, Nucleotide/pharmacology , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B/genetics , Liver Neoplasms/drug therapy , SELEX Aptamer Technique , DNA, Single-Stranded/genetics , DNA, Single-Stranded/pharmacology , Deoxyribonuclease I/genetics , Drug Delivery Systems , Flow Cytometry , HEK293 Cells , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology
3.
Biochimie ; 165: 76-89, 2019 Oct.
Article En | MEDLINE | ID: mdl-31302163

At least, more than half of our understanding of extracellular vesicles owes to the studies conducted over the past few years. When it became clear that the exosomes have various potentials in medicine, extensive research has focused on these potentials in a variety of areas including cancer, drug delivery and regenerative medicine. The growing understanding of molecular structure and functions of exosomes causes the vision to become brighter in the exosomes complexity, and our attitude toward these vesicles has undergone changes accordingly. Proteomic and transcriptomic studies on exosomes have highlighted their molecular diversity. In this review, we explicitly examine the exosomes composition, molecular structure and their therapeutic potentials in some diseases. Due to the very heterogeneous nature of exosomes, the process of their use as a therapeutic agent in the clinic has been challenged. We are still at the beginning of recognizing the molecular composition of exosomes and mechanisms that affect their physiology and biology. The growing trend of engineering of exosomes has shown a promising future to further utilize them in a different field. Molecular profiling of exosomes and their content for their related potentials in regenerative medicine should be done exactly for further defining a minimum content for specific therapeutic potentials.


Exosomes/chemistry , Exosomes/physiology , Mesenchymal Stem Cells/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cells, Cultured , Drug Delivery Systems , Humans , Mesenchymal Stem Cells/cytology , Mice , Proteomics , Rats , Regenerative Medicine
4.
J Cell Biochem ; 120(9): 16264-16272, 2019 09.
Article En | MEDLINE | ID: mdl-31111537

One of the most important molecules for multiple sclerosis pathogenesis is α4 integrin, which is responsible for autoreactive leukocytes migration into the brain. The monoclonal antibody, natalizumab, was introduced to market for blocking the extravasation of autoreactive leukocytes via inhibition of α4 integrin. However, the disadvantages of antibodies provided a suitable background for other agents to be replaced with antibodies. Considering the profound advantages of aptamers over antibodies, aptamer isolation against α4 integrin was intended in the current study. The α4 integrin-specific aptamers were selected using cell-systematic evolution of ligands by exponential enrichment (SELEX) method with human embryonic kidney (HEK)-293T overexpressing α4 integrin and HEK-293T as target and control cells, respectively. Evaluation of selected aptamer was performed through flow cytometric analysis. The selected clones were then sequenced and analyzed for any possible secondary structure and affinity. The results of this study led to isolation of 13 different single-stranded DNA clones in 11 rounds of selection which were categorized to three clusters based on common structural motifs and the equilibrium dissociation constant (K d ) of the most stable structure was calculated. The evaluation of SELEX progress showed growth in aptamer affinity with increasing of the number of cycles. Taken together, the findings of this study demonstrated the isolation of α4-specific single-stranded DNA aptamers with suitable affinity for ligand, which can further be replaced with natalizumab.


Aptamers, Nucleotide/genetics , Integrin alpha4/chemistry , Multiple Sclerosis/genetics , Aptamers, Nucleotide/pharmacology , HEK293 Cells , Humans , Integrin alpha4/genetics , Models, Molecular , Multiple Sclerosis/drug therapy , Nucleic Acid Conformation , SELEX Aptamer Technique
5.
Res Pharm Sci ; 12(6): 456-464, 2017 Dec.
Article En | MEDLINE | ID: mdl-29204174

Integrins are adhesion molecules which play crucial roles in cell-cell and cell-extracellular matrix interactions. Very late antigen-4 or α4ß1 and lymphocyte Peyer's patch adhesion molecule-1 or α4ß7, are key factors in the invasion of tumor cells and metastasis. Based on the previous reports, integrin α4 (ITGA4) is overexpressed in some immune disorders and cancers. Thus, inhibition of ITGA4 could be a therapeutic strategy. In the present study, miR-30a was selected in order to suppress ITGA4 expression. The ITGA4 3' UTR was amplified, cloned in the Z2827-M67-(ITGA4) plasmid and named as Z2827-M67/3'UTR. HeLa cells were divided into five groups; (1) untreated without any transfection, (2) mock with Z2827-M67/3'UTR transfection and X-tremeGENE reagent, (3) negative control with Z2827-M67/3'UTR transfection alone, (4) test with miR-30a mimic and Z2827-M67/3'UTR transfection and (5) scramble with miR-30a scramble and Z2827-M67/3'UTR transfection. The MTT assay was performed to evaluate cell survival and cytotoxicity in each group. Real-time RT-PCR was applied for the ITGA4 expression analysis. The findings of this study showed that miR-30a downregulated ITGA4 expression and had no effect on the cell survival. Due to the silencing effect of miR-30a on the ITGA4 gene expression, this agent could be considered as a potential tool for cancer and immune disorders therapy.

6.
Res Pharm Sci ; 12(2): 88-98, 2017 Apr.
Article En | MEDLINE | ID: mdl-28515761

Viral hepatitis, as an international public health concern, seriously affects communities and health system. In recent years, great strides have been taken for development of new potential tools against viral hepatitis. Among these efforts, a valuable strategy introduced new molecules called "aptamers". Aptamers as potential alternatives for antibodies could be directed against any protein in infected cells and any components of viral particles. In this review, we will focus on recent advances in the diagnosis and treatment of viral hepatitis based on aptamer technology. In recent years, various types of aptamers including RNA and DNA were introduced against viral hepatitis. Some of these aptamers can be utilized for early and precise diagnosis of hepatitis infections and other group selected as therapeutic tools against viral targets. Designing diagnostic and therapeutic platforms based on aptamer technology is a promising approach in viral infections. The obtained aptamers in the recent years showed obvious potential for use as diagnostic and therapeutic tools against viral hepatitis. Although some modifications to increase the biostability and half-life of aptamers are underway, it seems these molecules will be a favorable substitute for monoclonal antibody in near future.

...