Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 3(9): 2467-2477, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37772177

RESUMEN

The use of nanopores for the single-molecule sensing of folded proteins and biomacromolecules has recently gained attention. Here, we introduce a simplified synthetic α-helical transmembrane pore, pPorA, as a nanoreactor and sensor that exhibits functional versatility comparable to that of engineered protein and DNA nanopores. The pore, built from the assembly of synthetic 40-amino-acid-long peptides, is designed to contain cysteine residues within the lumen and at the pore terminus for site-specific chemical modification probed using single-channel electrical recordings. The reaction of the pore with differently charged activated thiol reagents was studied, wherein positively charged reagents electrophoretically driven into the pore resulted in pore blocking in discrete steps upon covalent bond formation. The asymmetric blockage patterns resulting from cis and trans-side addition of reagents reveal the pore orientation in the lipid membrane. Furthermore, activated PEG thiols covalently blocked the pores over a longer duration in a charge-independent manner, establishing the large diameter and orientation of the formed pores. While the covalent binding of thiol reagents caused a drop in the pore conductance, cationic cyclic octasaccharides produced time-resolved translocation events, confirming the structural flexibility and tunability of the pores. The ability of the pore to accommodate large analytes and the considerable current amplitude variation following bond formation events are promising for developing platforms to resolve multistep chemical reactions at the single-molecule level for applications in synthetic nanobiotechnology.

2.
Chem Asian J ; 17(24): e202200891, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36325993

RESUMEN

Naturally-occurring membrane proteins have been engineered as nanopore sensors for the single-molecule detection of various biochemical molecules. Here, we present a natural bacterial porin, CymA containing a dynamic component and densely packed charged residues in the pore, shaping a unique structural conformation and charge feature. Using single-channel recordings, we investigated the translocation of charged polypeptides through native CymA and truncated CymA lacking the dynamic element. Cationic polypeptides bind to the pore with high affinity, specifically at low salt conditions indicating an electrostatic charge and voltage-dependent translocation. Anionic peptides did not bind to the pore, confirming the selective binding of polypeptides with the pore due to their specific charge distribution. Further, the distinct peptide translocation kinetics between native and truncated indicated the role of the dynamic segment in molecular transport. We suggest that these natural membrane pores that permit the selective translocation of cationic polypeptides are advantageous for nanopore proteomics applications.


Asunto(s)
Proteínas de la Membrana , Nanoporos , Electricidad Estática , Péptidos/química , Cinética , Cationes
3.
Nat Commun ; 13(1): 5377, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104348

RESUMEN

Tailored transmembrane alpha-helical pores with desired structural and functional versatility have promising applications in nanobiotechnology. Herein, we present a transmembrane pore DpPorA, based on the natural pore PorACj, built from D-amino acid α-helical peptides. Using single-channel current recordings, we show that DpPorA peptides self-assemble into uniform cation-selective pores in lipid membranes and exhibit properties distinct from their L-amino acid counterparts. DpPorA shows resistance to protease and acts as a functional nanopore sensor to detect cyclic sugars, polypeptides, and polymers. Fluorescence imaging reveals that DpPorA forms well-defined pores in giant unilamellar vesicles facilitating the transport of hydrophilic molecules. A second D-amino acid peptide based on the polysaccharide transporter Wza forms transient pores confirming sequence specificity in stable, functional pore formation. Finally, molecular dynamics simulations reveal the specific alpha-helical packing and surface charge conformation of the D-pores consistent with experimental observations. Our findings will aid the design of sophisticated pores for single-molecule sensing related technologies.


Asunto(s)
Membrana Dobles de Lípidos , Péptidos , Aminoácidos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Péptidos/química , Conformación Proteica en Hélice alfa
4.
Nat Commun ; 11(1): 3967, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770122

RESUMEN

Temporally controlled cooperative and living supramolecular polymerization by the buffered release of monomers has been recently introduced as an important concept towards obtaining monodisperse and multicomponent self-assembled materials. In synthetic, dynamic supramolecular polymers, this requires efficient design strategies for the dormant, inactive states of the monomers to kinetically retard the otherwise spontaneous nucleation process. However, a generalized design principle for the dormant monomer states to expand the scope of precision supramolecular polymers has not been established yet, due to the enormous differences in the mechanism, energetic parameters of self-assembly and monomer exchange dynamics of the diverse class of supramolecular polymers. Here we report the concept of transient dormant states of monomers generated by redox reactions as a predictive general design to achieve monodisperse supramolecular polymers of electronically active, chromophoric or donor-acceptor, monomers. The concept has been demonstrated with charge-transfer supramolecular polymers with an alternating donor-acceptor sequence.

5.
ACS Nano ; 13(4): 4392-4401, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30916934

RESUMEN

Template-assisted strategies are widely used to fabricate nanostructured materials. By taking these strategies a step forward, herein we report the design of two chiral plasmonic nanostructures based on Au nanoparticle (NP) assemblies organized in clockwise and anticlockwise directions, having opposite response to circularly polarized light. The chiral plasmonic nanostructures are obtained by growing Au NPs on chiral templates based on d- and l-forms of alanine functionalized phenyleneethynylenes. Interestingly, Au NP assemblies show mirror symmetrical electronic circular dichroism (ECD) bands at their surface plasmon frequency originating through their asymmetric organization. Upon increasing the temperature, the chiral templates dissociate as evident from the disappearance of their ECD signal. The profound advantage of the thermoresponsive nature of the templates is employed to obtain free-standing chiral plasmonic nanostructures. The tilt angle high-resolution transmission electron microscopic measurements indicate that the NP assemblies, grown on a template based on the d-isomer, organize in clockwise direction ( P-form) and on l-isomer in anticlockwise direction ( M-form). The inherent chirality prevailing on the surface of the template drives the helical growth of the Au NPs in opposite directions. Experimental results are rationalized by a model which accounts for the large polarizability of Au NPs. The large polarizability leads to large oscillating dipole moments whose effects become prominent when interparticle distances are comparable to the particle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA