Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(7): 8005-8018, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405440

RESUMEN

Inorganic metal halide solar cells made from perovskite stand out for having outstanding efficiency, cheap cost, and simple production processes and recently have generated attention as a potential rival in photovoltaic technology. Particularly, lead-free Ca3AsBr3 inorganic materials have a lot of potential in the renewable industry due to their excellent qualities, including thermal, electric, optoelectronic, and elastic features. In this work, we thoroughly analyzed the stress-driven structural, mechanical, electrical, and optical properties of Ca3AsBr3 utilizing first-principles theory. The unstressed planar Ca3AsBr3 compound's bandgap results in 1.63 eV, confirming a direct bandgap. The bandgap within this compound could have changed by applying hydrostatic stress; consequently, a semiconductor-to-metallic transition transpired at 50 GPa. Simulated X-ray diffraction further demonstrated that it maintained its initial cubic form, even after external disruption. Additionally, it has been shown that an increase in compressive stress causes a change of the absorption spectra and the dielectric function with a red shift of photon energy at the lower energy region. Because of the material's mechanical durability and increased degree of ductility, demonstrated by its stress-triggered mechanical characteristics, the Ca3AsBr3 material may be suitable for solar energy applications. The mechanical and optoelectronic properties of Ca3AsBr3, which are pressure sensitive, could potentially be advantageous for future applications in optical devices and photovoltaic cell architecture.

2.
ACS Omega ; 8(24): 21885-21897, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360439

RESUMEN

The structural, optical, electrical, thermodynamic, superconducting, and mechanical characteristics of LiGa2Ir full-Heusler alloys with the MnCu2Al configuration were comprehensively examined in this work using the first-principles computation approach premised upon density functional analysis. This theoretical approach is the first to investigate the influence of pressure on the mechanical and optical characteristics of LiGa2Ir. The structural and chemical bonding analysis shows that hydrostatic pressure caused a decrease in the lattice constant, volume, and bond length of each cell. According to the mechanical property calculations, the LiGa2Ir cubic Heusler alloy exhibits mechanical stability. It also has ductility and anisotropic behavior. This metallic substance shows no band gap throughout the applied pressure range. The physical characteristics of the LiGa2Ir full-Heusler alloy are analyzed in the operating pressure range of 0-10 GPa. The quasi-harmonic Debye model is employed to analyze thermodynamic properties. The Debye temperature (291.31 K at 0 Pa) increases with hydrostatic pressure. A newly invented structure attracted a lot of attention around the globe for its superior superconductivity (Tc ∼ 2.95 K). Optical functions have also been improved after applying stress to utilize it in optoelectronic/nanoelectric devices. The optical function analysis is supported strongly by the electronic properties. Due to these reasons, LiGa2Ir imposed an essential guiding principle for relevant future research and could be a credible candidate substance for industrial settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA