Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(2)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38990118

RESUMEN

The doping of CdS quantum dots (QDs) with Cu(I) disrupts electron-hole correlation due to hole trapping by the dopant ion, post-photoexcitation. The present paper examines the effect of such disruption on the rate of photoinduced electron transfer (PET) from the QDs to methyl viologen (MV2+), with implications in their photocatalytic activity. A significantly greater efficiency of PL quenching by MV2+ is observed for the doped QDs than for the undoped ones. Interestingly, the Stern-Volmer plots constructed using PL intensities exhibit an upward curvature for both the cases, while the PL lifetimes remain unaffected. This observation is rationalized by considering the adsorption of the quencher on the surface of the QDs and ultrafast PET post-photoexcitation. Ultrafast transient absorption experiments confirm a faster electron transfer for the doped QDs. It is also realized that the transient absorption experiment yields a more accurate estimate of the binding constant of the quencher with the QDs, than the PL experiment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38526664

RESUMEN

Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 µg/mL) in combination with tobramycin (0.05 µg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.

3.
Microb Pathog ; 190: 106624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492828

RESUMEN

Pseudomonas aeruginosa is widely associated with biofilm-mediated antibiotic resistant chronic and acute infections which constitute a persistent healthcare challenges. Addressing this threat requires exploration of novel therapeutic strategies involving the combination of natural compounds and conventional antibiotics. Hence, our study has focused on two compounds; cuminaldehyde and ciprofloxacin, which were strategically combined to target the biofilm challenge of P. aeruginosa. The minimum inhibitory concentration (MIC) of cuminaldehyde and ciprofloxacin was found to be 400 µg/mL and 0.4 µg/mL, respectively. Moreover, the fractional inhibitory concentration index (FICI = 0.62) indicated an additive interaction prevailed between cuminaldehyde and ciprofloxacin. Subsequently, sub-MIC doses of cuminaldehyde (25 µg/mL) and ciprofloxacin (0.05 µg/mL) were selected for an array of antibiofilm assays which confirmed their biofilm inhibitory potential without exhibiting any antimicrobial activity. Furthermore, selected doses of the mentioned compounds could manage biofilm on catheter surface by inhibiting and disintegrating existing biofilm. Additionally, the test combination of the mentioned compounds reduced virulence factors secretion, accumulated reactive oxygen species and increased cell-membrane permeability. Thus, the combination of cuminaldehyde and ciprofloxacin demonstrates potential in combating biofilm-associated Pseudomonal threats.


Asunto(s)
Antibacterianos , Benzaldehídos , Biopelículas , Ciprofloxacina , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Especies Reactivas de Oxígeno , Biopelículas/efectos de los fármacos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Antibacterianos/farmacología , Benzaldehídos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factores de Virulencia , Cimenos/farmacología , Sinergismo Farmacológico , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos
4.
Microb Pathog ; 189: 106601, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423404

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant human pathogen causes several nosocomial as well as community-acquired infections involving biofilm machinery. Hence, it has gained a wide interest within the scientific community to impede biofilm-induced MRSA-associated health complications. The current study focuses on the utilization of a natural bioactive compound called piperine to control the biofilm development of MRSA. Quantitative assessments like crystal violet, total protein recovery, and fluorescein-di-acetate (FDA) hydrolysis assays, demonstrated that piperine (8 and 16 µg/mL) could effectively compromise the biofilm formation of MRSA. Light and scanning electron microscopic image analysis confirmed the same. Further investigation revealed that piperine could reduce extracellular polysaccharide production by down-regulating the expression of icaA gene. Besides, piperine could reduce the cell-surface hydrophobicity of MRSA, a crucial factor of biofilm formation. Moreover, the introduction of piperine could interfere with microbial motility indicating the interaction of piperine with the quorum-sensing components. A molecular dynamics study showed a stable binding between piperine and AgrA protein (regulator of quorum sensing) suggesting the possible meddling of piperine in quorum-sensing of MRSA. Additionally, the exposure to piperine led to the accumulation of intracellular reactive oxygen species (ROS) and potentially heightened cell membrane permeability in inhibiting microbial biofilm formation. Besides, piperine could reduce the secretion of diverse virulence factors from MRSA. Further exploration revealed that piperine interacted with extracellular DNA (e-DNA), causing disintegration by weakening the biofilm architecture. Conclusively, this study suggests that piperine could be a potential antibiofilm molecule against MRSA-associated biofilm infections.


Asunto(s)
Alcaloides , Benzodioxoles , Staphylococcus aureus Resistente a Meticilina , Piperidinas , Alcamidas Poliinsaturadas , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Biopelículas , Fitoquímicos/farmacología , ADN/metabolismo , Pruebas de Sensibilidad Microbiana
5.
Appl Biochem Biotechnol ; 196(3): 1272-1291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37389724

RESUMEN

Staphylococcus aureus causes a range of chronic infections in humans by exploiting its biofilm machinery and drug-tolerance property. Although several strategies have been proposed to eradicate biofilm-linked issues, here, we have explored whether piperine, a bioactive plant alkaloid, can disintegrate an already existing Staphylococcal biofilm. Towards this direction, the cells of S. aureus were allowed to develop biofilm first followed by treatment with the test concentrations (8 and 16 µg/mL) of piperine. In this connection, several assays such as total protein recovery assay, crystal violet assay, extracellular polymeric substances (EPS) measurement assay, fluorescein diacetate hydrolysis assay, and fluorescence microscopic image analysis confirmed the biofilm-disintegrating property of piperine against S. aureus. Piperine reduced the cellular auto-aggregation by decreasing the cell surface hydrophobicity. On further investigation, we observed that piperine could down regulate the dltA gene expression that might reduce the cell surface hydrophobicity of S. aureus. It was also observed that the piperine-induced accumulation of reactive oxygen species (ROS) could enhance biofilm disintegration by decreasing the cell surface hydrophobicity of the test organism. Together, all the observations suggested that piperine could be used as a potential molecule for the effective management of the pre-existing biofilm of S. aureus.


Asunto(s)
Alcaloides , Piperidinas , Alcamidas Poliinsaturadas , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Biopelículas , Alcaloides/farmacología , Benzodioxoles/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
6.
Folia Microbiol (Praha) ; 69(4): 823-834, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38133854

RESUMEN

The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.


Asunto(s)
Antibacterianos , Benzaldehídos , Biopelículas , Gentamicinas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Gentamicinas/farmacología , Antibacterianos/farmacología , Benzaldehídos/farmacología , Cimenos/farmacología , Factores de Virulencia , Sinergismo Farmacológico , Humanos
7.
Folia Microbiol (Praha) ; 68(6): 843-854, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37142893

RESUMEN

1, 4-naphthoquinone, a plant-based quinone derivative, has gained much attention for its effectiveness against several biofilm-linked diseases. The biofilm inhibitory effect of 1, 4-naphthoquinone against Staphylococcus aureus has already been reported in our previous study. We observed that the extracellular DNA (eDNA) could play an important role in holding the structural integrity of the biofilm. Hence, in this study, efforts have been directed to examine the possible interactions between 1, 4-naphthoquinone and DNA. An in silico analysis indicated that 1, 4-naphthoquinone could interact with DNA through intercalation. To validate the same, UV-Vis spectrophotometric analysis was performed in which a hypochromic shift was observed when the said molecule was titrated with calf-thymus DNA (CT-DNA). Thermal denaturation studies revealed a change of 8℃ in the melting temperature (Tm) of CT-DNA when complexed with 1, 4-naphthoquinone. The isothermal calorimetric titration (ITC) assay revealed a spontaneous intercalation between CT-DNA and 1, 4-naphthoquinone with a binding constant of 0.95 ± 0.12 × 108. Furthermore, DNA was run through an agarose gel electrophoresis with a fixed concentration of ethidium bromide and increasing concentrations of 1, 4-naphthoquinone. The result showed that the intensity of ethidium bromide-stained DNA got reduced concomitantly with the gradual increase of 1, 4-naphthoquinone suggesting its intercalating nature. To gain further confidence, the pre-existing biofilm was challenged with ethidium bromide wherein we observed that it could also show biofilm disintegration. Therefore, the results suggested that 1, 4-naphthoquinone could exhibit disintegration of the pre-existing biofilm of Staphylococcus aureus through eDNA intercalation.


Asunto(s)
Naftoquinonas , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Etidio/farmacología , Naftoquinonas/farmacología , ADN/farmacología , Biopelículas
8.
Folia Microbiol (Praha) ; 68(5): 801-811, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37097592

RESUMEN

Microorganisms embedded within an extracellular polymeric matrix are known as biofilm. The extensive use of antibiotics to overcome the biofilm-linked challenges has led to the emergence of multidrug-resistant strains. Staphylococcus aureus is one such nosocomial pathogen that is known to cause biofilm-linked infections. Thus, novel strategies have been adopted in this study to inhibit the biofilm formation of S. aureus. Two natural compounds, namely, 1,4-naphthoquinone (a quinone derivative) and tryptophan (aromatic amino acid), have been chosen as they could independently show efficient antibiofilm activity. To enhance the antibiofilm potential, the two compounds were combined and tested against the same organism. Several experiments like crystal violet (CV) assay, protein estimation, extracellular polymeric substance (EPS) extraction, and estimation of metabolic activity confirmed that the combination of the two compounds could significantly inhibit the biofilm formation of S. aureus. To comprehend the underlying mechanism, efforts were further directed to understand whether the two compounds could inhibit biofilm formation by compromising the cell surface hydrophobicity of the bacteria. The results revealed that the cell surface hydrophobicity got reduced by ~ 49% when the compounds were applied together. Thus, the combinations could show enhanced antibiofilm activity by attenuating cell surface hydrophobicity. Further studies revealed that the selected concentrations of the compounds could disintegrate (~ 70%) the pre-existing biofilm of the test bacteria without showing any antimicrobial activity. Hence, the combined application of tryptophan and 1,4-naphthoquinone could be used to inhibit the biofilm threats of S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Triptófano/farmacología , Matriz Extracelular de Sustancias Poliméricas , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas , Pruebas de Sensibilidad Microbiana
9.
RSC Adv ; 13(8): 5457-5466, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36793299

RESUMEN

A green, novel and eco-efficient synthetic route towards the synthesis of highly substituted bio-active pyrrolidine-2-one derivatives was demonstrated using ß-cyclodextrin, a water-soluble supramolecular solid as a green and eco-benign catalyst at room temperature under water-ethanol solvent medium. The exploration of the green catalyst ß-cyclodextrin for the metal-free one-pot three-component synthesis of a wide range of highly functionalized bio-active heterocyclic pyrrolidine-2-one moieties from easily available aldehydes and amines explains the superiority and uniqueness of this protocol.

10.
Nanoscale ; 15(9): 4469-4476, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36752332

RESUMEN

Cu-doped CdS quantum dots (QDs) have been synthesized in water using 3-mercaptopropionic acid (3-MPA) as the capping agent. They exhibit intense photoluminescence and excellent color tunability, unlike most of the QDs synthesized/dispersed in water so far. Complete characterization of these aqueous doped CdS QDs has been performed for the first time, along with a single particle level elucidation of their exciton dynamics using fluorescence correlation spectroscopy. Photoactivation via dim/dark to bright particle conversion is observed at higher excitation powers. Dispersive blinking kinetics in undoped QDs reflects the involvement of a broad distribution of trap states. A lesser extent of dispersity is observed for doped QDs, in which hole-capture by Cu-defect states predominates. Excitation fluence dependence of the blinking rate highlights the role of Auger recombination in undoped QDs, which is suppressed significantly upon doping, due to disruption of the electron-hole correlation.

11.
Appl Biochem Biotechnol ; 195(5): 3229-3256, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36580259

RESUMEN

Gram-positive and Gram-negative bacteria often develop biofilm through different mechanisms in promoting pathogenicity. Hence, the antibiofilm molecule needs to be examined separately on both organisms to manage the biofilm threat. Since the antibiofilm activity of piperine against Staphylococcus aureus was already reported; here, we aimed to examine the antibiofilm activity of it against Pseudomonas aeruginosa. P. aeruginosa is an opportunistic Gram-negative pathogen that can cause several healthcare-associated infections by exploiting biofilm. Several experiments like crystal violet assay, estimation of total protein, measurement of extracellular polymeric substance, and microscopic analysis confirmed that lower concentrations (8 and 16 µg/mL) of piperine could inhibit the microbial biofilm formation considerably. Besides, it could also reduce the secretion of virulence factors from P. aeruginosa. Further investigation showed that the cell surface hydrophobicity and microbial motility of the test organism got reduced under the influence of piperine. Piperine exposure was found to increase the accumulation of reactive oxygen species (ROS) that resulted in the inhibition of biofilm formation. Furthermore, the molecular simulation studies suggested that piperine could affect the quorum sensing network of P. aeruginosa. Towards this direction, we noticed that piperine treatment could decrease the expression of the quorum sensing gene (lasI) that resulted in the inhibition of biofilm formation. Besides biofilm inhibition, piperine was also found to disintegrate the pre-existing biofilm of P. aeruginosa without showing any antimicrobial property to the test organism. Thus, piperine could be used for the sustainable protection of public-healthcare by compromising the biofilm assembly of P. aeruginosa.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/genética , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antibacterianos/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Biopelículas , Factores de Virulencia/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
12.
Sci Total Environ ; 864: 161015, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549542

RESUMEN

Soil erosion coupled with high runoff poses a significant threat to the topsoil fertility, declining its productivity and raising major environmental and socio-economic issues such as land degradation, desertification, food scarcity, and hunger globally. Several conservation methods have been widely adopted in order to reduce runoff and protect the soil from erosion. The effectiveness of such conservation practices are controlled by many factors (i.e., climate, topography, soil properties, land use). To understand their efficiency and their trade-off, we conducted a meta-analysis by collecting 98 research articles within the time frame of 1981-2021, considering the most widespread soil and water conservation practices all over the world. The results exhibited that most of the conservation practices are useful in controlling soil erosion as compared to the runoff rate in which Hedgerow practice was found to be the most effective measure in controlling runoff rate (57 %) while no-tillage was proved to be the most efficient in reducing soil erosion (83 %). On the other hand, strip cropping showed a balanced runoff reduction efficiency (RRE) and soil erosion reduction efficiency (SERE), both reaching around 65 %, followed by hedgerow (59 % and 52 %) and mulching (51 % and 60 %). The results were restrained by varying climatic and physical scenarios. This study provides a systematic overview of the effectiveness of different runoff and soil erosion conservation practices and their controlling factors in a holistic way that can serve as the basis for the government and policymakers for the sustainable and rational implementation of such practices in the future.

13.
Folia Microbiol (Praha) ; 68(1): 151-163, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36192618

RESUMEN

Pseudomonas aeruginosa, an opportunistic pathogen, has been found to cause several chronic and acute infections in human. Moreover, it often shows drug-tolerance and poses a severe threat to public healthcare through biofilm formation. In this scenario, two molecules, namely, cuminaldehyde and tobramycin, were used separately and in combination for the efficient management of biofilm challenge. The minimum inhibitory concentration (MIC) of cuminaldehyde and tobramycin was found to be 150 µg/mL and 1 µg/mL, respectively, against Pseudomonas aeruginosa. The checkerboard assay revealed that the fractional inhibitory concentration (FIC) index of cuminaldehyde and tobramycin was 0.36 suggesting a synergistic association between them. The sub-MIC dose of cuminaldehyde (60 µg/mL) or tobramycin (0.06 µg/mL) individually did not show any effect on the microbial growth curve. However, the same combinations could affect microbial growth curve of Pseudomonas aeruginosa efficiently. In connection to biofilm management, it was observed that the synergistic interaction between cuminaldehyde and tobramycin could inhibit biofilm formation more efficiently than their single use (p < 0.01). Further investigation revealed that the combinations of cuminaldehyde and tobramycin could generate reactive oxygen species (ROS) that resulted in the increase of membrane permeability of bacterial cells leading to the efficient inhibition of microbial biofilm formation. Besides, the synergistic interaction between cuminaldehyde (20 µg/mL) and tobramycin (0.03 µg/mL) also showed significant biofilm dispersal of the test microorganism (p < 0.01). Hence, the results suggested that synergistic action of cuminaldehyde and tobramycin could be applied for the efficient management of microbial biofilm.


Asunto(s)
Infecciones por Pseudomonas , Tobramicina , Humanos , Tobramicina/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa , Biopelículas , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico
14.
Methods Appl Fluoresc ; 10(3)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35697038

RESUMEN

3-Aminoquinoline (3AQ) has been used as a fluorescent probe for preferential solvation in hexane-ethanol solvent mixtures. Results of the present experiment have been put into context by comparison with prior observations with 5-aminoquinoline (5AQ) as the probe. 3AQ exhibits a relatively small change of dipole moment (Δµ= 2.2 D) upon photoexcitation, compared to 5AQ (Δµ= 6.1D), which might appear to be a hindrance in the way of its use as a solvation probe. Indeed, the values of parameters like spectral shifts are smaller for the present experiment with 3AQ. At the smallest concentration of alcohol used, its local mole fraction around the probe is significantly lower than in the previous experiments with 5AQ. However, these apparent disadvantages are outweighed by the significant increase in fluorescence intensity and lifetime observed with increasing concentration of ethanol in the solvent mixture, as opposed to the drastic fluorescence quenching that occurs for 5AQ. This is a marked advantage in the use of 3AQ in studies like the present one. The local mole fraction of ethanol and preferential solvation index experienced by 3AQ are in line with those reported for 5AQ. The disadvantage of the smaller magnitude of Δµpersists in the time resolved fluorescence experiments, for solvent mixtures with very low ethanol content. Negligible wavelength dependence of fluorescence transients of 3AQ is observed forxp= 0.002,. However, this effect is outweighed at higher alcohol concentrations, for which nanosecond dynamics of preferential solvation is observed.


Asunto(s)
Etanol , Colorantes Fluorescentes , Aminoquinolinas , Solventes , Espectrometría de Fluorescencia
15.
J Phys Chem Lett ; 13(5): 1337-1343, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35108012

RESUMEN

Rechargeable magnesium-sulfur (Mg-S) batteries offer the potential for inexpensive energy storage alternatives to other metal-ion batteries for the grid scale and household applications. Despite all economic and resource advantages, Mg-S battery chemistry suffers from a complicated reaction mechanism and extremely slow reaction kinetics. To improve the kinetics, we improvise a new electrode architecture where a conductive polymer is used along with a carbon network. This report will bring an important insight of electrocatalytic activity of polyaniline, on the basis of free-radical coupling and is a completely new concept in Mg-S battery chemistry. By the combined electron spin resonance spectroscopy, X-ray photoelectron spectroscopy, and fluorescence lifetime measurements, we perceived that the polyaniline anchors the S3•- species from the electrolyte/catholyte through a free-radical-coupling process and thus promotes the reduction to end-discharged products, via a chemical adduct. The concept of free-radical catalysis in Mg/S batteries will open a new knowledge to enhance the active material utilization in the Mg-S batteries.

16.
Sci Total Environ ; 805: 150428, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818818

RESUMEN

Considering the current threatening conditions of climate change, Climate Smart Agriculture (CSA) aims to improve the soil health and its organic carbon stocks by encouraging soil carbon sequestration through conservation practices in agricultural lands. However, the effects of these practices differ due to diverse climatic scenario, soil characteristics and management system. To identify the suitable practices that can be effective under tropical and subtropical conditions, a systematic evaluation in the form of a meta-analysis of these practices and their outcomes was performed over those regions. In this work we have included 516 observations from 84 articles published from 2000 to 2021 to analyse the influence of three CSA practices (conservation tillage, cover crop and biochar application) on the SOC (soil organic carbon) stocks over varying periods of experimentation. In addition to this, the combined effect of CSA and other conservation agronomic practices such as agroforestry has also been considered in the analysis. The results showed that biochar application had the most influence upon SOC stocks in the agricultural lands (25.38%) followed by conservation tillage (18.81%) and cover crop (15.8%). Medium term experiments (6-20 years) of these conservation practices showed about 31.00-96.15%improvement in SOC while the effects gradually diminished in long term experiments (>20 years). The combinations of these practices have been observed to have an evidently positive impact upon the SOC stocks in general. This work provides a systematic evaluation of all the widely performed CSA and other conservation practices and their effects on SOC dynamics under differing management settings.


Asunto(s)
Carbono , Suelo , Agricultura , Secuestro de Carbono , Cambio Climático
17.
Arch Microbiol ; 204(1): 59, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940904

RESUMEN

Staphylococcus aureus causes numerous community-acquired and nosocomial infections in humans by exploiting biofilm. In this context, this study aims to impede the formation of Staphylococcus aureus biofilm by exposing the cells to a plant-based alkaloid, piperine. Our study revealed that piperine exhibited considerable antimicrobial activity against the test organism. However, we had tested the lower concentrations (up to 32 µg/mL) of piperine to observe whether they could show any antibiofilm activity against the same organism. Several experiments, like crystal violet (CV) assay, estimation of total biofilm protein, and fluorescence microscopic observations, established that lower concentrations (up to 16 µg/mL) of piperine showed efficient antibiofilm activity against Staphylococcus aureus. In this connection, we also noticed that the lower concentrations (8 and 16 µg/mL) of piperine showed a considerable reduction in microbial metabolic activity. Besides, it was also observed that the mentioned concentrations of piperine did not compromise the microbial growth of the target organism while exhibiting antibiofilm activity. To understand the underlying mechanism of microbial biofilm inhibition under the influence of piperine, we observed that the compound was found to accumulate reactive oxygen species in the bacterial cells that could play an important role in the inhibition of biofilm formation. Furthermore, the tested concentrations (8 and 16 µg/mL) of piperine were able to inhibit the motility of the test organism that might compromise the development of biofilm. Thus, piperine could be considered as a potential agent for the effective management of biofilm threat caused by Staphylococcus aureus.


Asunto(s)
Alcaloides , Staphylococcus aureus , Alcaloides/farmacología , Antibacterianos/farmacología , Benzodioxoles , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Piperidinas , Alcamidas Poliinsaturadas , Especies Reactivas de Oxígeno
18.
3 Biotech ; 11(11): 485, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34790509

RESUMEN

Pseudomonas aeruginosa often causes various acute and chronic infections in humans exploiting biofilm. Molecules interfering with microbial biofilm formation could be explored for the sustainable management of infections linked to biofilm. Towards this direction, the antimicrobial and antibiofilm activity of cuminaldehyde, an active ingredient of the essential oil of Cuminum cyminum was tested against Pseudomonas aeruginosa. In this regard, the minimum inhibitory concentration (MIC) of cuminaldehyde was found to be 150 µg/mL against the test organism. Experiments such as crystal violet assay, estimation of total biofilm protein, fluorescence microscopy and measurement of extracellular polymeric substances (EPS) indicated that the sub-MIC doses (up to 60 µg/mL) of cuminaldehyde demonstrated considerable antibiofilm activity without showing any antimicrobial activity to the test organism. Moreover, cuminaldehyde treatment resulted in substantial accumulation of cellular reactive oxygen species (ROS) that led to the inhibition of microbial biofilm formation. To this end, the exposure of ascorbic acid was found to restore the biofilm-forming ability of the cuminaldehyde-treated cells. Besides, a noticeable reduction in proteolytic activity was also observed when the organism was treated with cuminaldehyde. Taken together, the results demonstrated that cuminaldehyde could be used as a promising molecule to inhibit the biofilm formation of Pseudomonas aeruginosa.

19.
J Phys Chem B ; 125(46): 12763-12773, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34709811

RESUMEN

5-Aminoquinoline (5AQ) has been used as a fluorescent probe of preferential solvation (PS) in binary solvent mixtures in which the nonpolar component is diethyl ether and the polar component is protic (methanol) or aprotic (acetonitrile). Hence, the roles of solvent polarity and solute-solvent hydrogen bonding have been delineated. Positive deviations of spectral shifts from a linear dependence on the concentration of the polar component, signifying PS, are markedly more pronounced in case of the protic solvent. Solvation dynamics on a nanosecond time scale mark the formation of the solvation shell around the fluorescent probe. Time-resolved area-normalized emission spectra indicate the occurrence of the continuous solvation of the excited state when the polar component is acetonitrile. In contrast, two distinct states were observed when the polar component was methanol, the second state being the hydrogen bonded one. Translational diffusion is the rate-determining step for formation of the solvation shell. The time constant associated with it has been estimated from rise times observed in fluorescence transients monitored at the red end of the fluorescence spectra and also from the time evolution of the spectral width of time-resolved emission spectra.


Asunto(s)
Aminoquinolinas , Metanol , Enlace de Hidrógeno , Solventes
20.
Phys Chem Chem Phys ; 23(35): 19494-19502, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524318

RESUMEN

Strategies have been explored for developing strongly fluorescent species out of a weakly fluorescent Schiff base, 2-(((pyridin-2-ylmethyl)imino)methyl)phenol (salampy). The locally excited enolic state of salampy undergoes an intramolecular proton transfer with a time constant of ca. 200 fs. The emissive cis keto state thus formed decays completely within 50 ps. Its fast decay and miniscule fluorescence quantum yield are attributed to efficient non-radiative channels associated with conformational relaxation. The anionic form, salampy-, has a significantly longer fluorescence lifetime of 800 ps. Its emissive state evolves in tens of picoseconds, from the locally excited state, by solvent and conformational relaxation. Both the neutral and anionic forms have a fluorescence lifetime of about 6 ns at 77 K, a temperature at which all activated nonradiative channels are blocked. This lifetime is similar to that obtained at room temperature, upon rigidification of the anion by complexation with Zn2+. Two such complexes have been studied. The first is binuclear, with acetate bridge between the two Zn2+ ions. The second, with ClO4- as the counterion, is mononuclear with two salampy ligands ligating the metal ion. Unlike a previous report on a different Schiff base, in which the ligands are π-stacked in its dimeric Zn2+ complex, no additional nonradiative deactivation pathway opens up in the Zn complexes of salampy, which are devoid of such stacking. The complex of salampy with Al3+ has an even longer fluorescence lifetime of 9 ns, indicating a greater degree of rigidification and consequent suppression of nonradiative processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA