Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 264
1.
Lipids Health Dis ; 23(1): 112, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641607

It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifestations including "long haul syndrome" are due to deficiency of essential fatty acids (EFAs) and dysregulation of their metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate macrophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its associated complications.


COVID-19 , Humans , SARS-CoV-2/metabolism , Fatty Acids, Essential/metabolism , Syndrome , Inflammation/metabolism
4.
Discov Med ; 35(178): 653-663, 2023 10.
Article En | MEDLINE | ID: mdl-37811607

Mitochondria-associated membranes (MAMs) play a significant role in multiple cellular processes including lipid metabolism and neuronal survival. Fatty acids constitute 80% of the dry mass of the brain and are vital for life. Apart from mitochondrial ß-oxidation, fatty acids are metabolized in part by peroxisomes to regulate the generation of acyl Coenzyme A and adenosine triphosphate (ATP). Ablation of mitochondria and its associated genes tether endoplasmic reticulum (ER)-Mitochondria contact and results in loss of function leading to aberrant lipid metabolism. Additionally, an increase in reactive oxygen species (ROS) levels along with free radicals' generation may lead to alteration in the integrity of membrane phospholipids, proteins, and DNA. Hence, it is critical to understand the effect of structural and functional aspects of mitochondria on lipid homeostasis. This review explains the role of mitochondrial dysfunction in lipid metabolism and its impact on various neurodegenerative diseases and metabolic disorders.


Fatty Acids , Mitochondria , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Homeostasis , Fatty Acids/metabolism , Lipids
5.
Life Sci ; 333: 122141, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37797688

Toxicity caused by chronic hyperglycemia is a significant factor affecting skeletal muscle myogenesis, resulting in diabetic myopathy. Chronic and persistent hyperglycemia causes activation of the atrophy-related pathways in the skeletal muscles, which eventually results in inflammation and muscle degeneration. To counteract this process, various bioactive compound has been studied for their reversal or hypertrophic effect. In this study, we explored the molecular mechanisms associated with reversing glucotoxicity's effect in C2C12 cells by arachidonic acid (AA). We found a substantial increase in the pro-inflammatory cytokines and ROS production in hyperglycemic conditions, mitigated by AA supplementation. We found that AA supplementation restored protein synthesis that was downregulated under glucotoxicity conditions. AA enhanced myogenesis by suppressing high glucose induced inflammation and ROS production and enhancing protein synthesis. These results imply that AA has cytoprotective actions against hyperglycemia-induced cytotoxicity.


Hyperglycemia , Muscular Atrophy , Humans , Arachidonic Acid/metabolism , Reactive Oxygen Species/metabolism , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Hyperglycemia/metabolism , Inflammation/pathology
6.
Biomolecules ; 13(9)2023 08 31.
Article En | MEDLINE | ID: mdl-37759732

Sepsis is triggered by microbial infection, injury, or even major surgery. Both innate and adaptive immune systems are involved in its pathogenesis. Cytoplasmic presence of DNA or RNA of the invading organisms or damaged nuclear material (in the form of micronucleus in the cytoplasm) in the host cell need to be eliminated by various nucleases; failure to do so leads to the triggering of inflammation by the cellular cGAS-STING system, which induces the release of IL-6, TNF-α, and IFNs. These cytokines activate phospholipase A2 (PLA2), leading to the release of polyunsaturated fatty acids (PUFAs), gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), which form precursors to various pro- and anti-inflammatory eicosanoids. On the other hand, corticosteroids inhibit PLA2 activity and, thus, suppress the release of GLA, AA, EPA, and DHA. PUFAs and their metabolites have a negative regulatory action on the cGAS-STING pathway and, thus, suppress the inflammatory process and initiate inflammation resolution. Pro-inflammatory cytokines and corticosteroids (corticosteroids > IL-6, TNF-α) suppress desaturases, which results in decreased formation of GLA, AA, and other PUFAs from the dietary essential fatty acids (EFAs). A deficiency of GLA, AA, EPA, and DHA results in decreased production of anti-inflammatory eicosanoids and failure to suppress the cGAS-STING system. This results in the continuation of the inflammatory process. Thus, altered concentrations of PUFAs and their metabolites, and failure to suppress the cGAS-STING system at an appropriate time, leads to the onset of sepsis. Similar abnormalities are also seen in radiation-induced inflammation. These results imply that timely administration of GLA, AA, EPA, and DHA, in combination with corticosteroids and anti-IL-6 and anti-TNF-α antibodies, may be of benefit in mitigating radiation-induced damage and sepsis.


Sepsis , Tumor Necrosis Factor-alpha , Humans , Interleukin-6 , Tumor Necrosis Factor Inhibitors , Inflammation/metabolism , Fatty Acids, Unsaturated , Eicosanoids , Eicosapentaenoic Acid/pharmacology , Arachidonic Acid , Cytokines , Docosahexaenoic Acids , Anti-Inflammatory Agents
7.
Arch Med Sci ; 19(5): 1327-1359, 2023.
Article En | MEDLINE | ID: mdl-37732033

COVID-19 is caused by SARS-CoV-2 infection. Epithelial and T, NK, and other immunocytes release bioactive lipids especially arachidonic acid (AA) in response to microbial infections to inactivate them and upregulate the immune system. COVID-19 (coronavirus) and other enveloped viruses including severe acute respiratory syndrome (SARS-CoV-1 of 2002-2003) and Middle East respiratory syndrome (MERS; 2012-ongoing) and hepatitis B and C (HBV and HCV) can be inactivated by AA, γ-linolenic acid (GLA, dihomo-GLA (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), which are precursors to several eicosanoids. Prostaglandin E1, lipoxin A4, resolvins, protectins and maresins enhance phagocytosis of macrophages and leukocytes to clear debris from the site(s) of infection and injury, enhance microbial clearance and wound healing to restore homeostasis. Bioactive lipids modulate the generation of M1 and M2 macrophages and the activity of other immunocytes. Mesenchymal and adipose tissue-derived stem cells secrete LXA4 and other bioactive lipids to bring about their beneficial actions in COVID-19. Bioactive lipids regulate vasomotor tone, inflammation, thrombosis, immune response, inactivate enveloped viruses, regulate T cell proliferation and secretion of cytokines, stem cell survival, proliferation and differentiation, and leukocyte and macrophage functions, JAK kinase activity and neutrophil extracellular traps and thus, have a critical role in COVID-19.

8.
Reprod Toxicol ; 120: 108438, 2023 09.
Article En | MEDLINE | ID: mdl-37454977

Arachidonic acid (AA), an ω-6 polyunsaturated fatty acid involved in signalling pathways that drive cell fate decisions, has an enhancing role in the immunomodulatory effect on mesenchymal stem cells and the vasculogenesis of embryonic stem cells. 3D embryoid bodies (EBs) from pluripotent stem cells (PSCs) have been used as in vitro models for embryotoxicity for various compounds/drugs. Valproic acid (VA), a common anti-epileptic drug, is known to be embryotoxic and cause malformations in embryos. As early embryogenesis depends on AA, we investigated the embryo protective effects of AA against the embryotoxic drug VA in this study. The effects of AA on the proliferation and cell cycle parameters of PSCs were studied. In particular, the potential of AA to abrogate VA-induced embryotoxicity in vitro was evaluated using ROS detection and antioxidant assays. In response to AA, we observed modulation in cell proliferation of induced pluripotent stem cells (iPSCs) and pluripotent NTERA-2 embryonal carcinoma (EC) cells. The present study substantiates the cytoprotective effects of AA against VA. These results imply that AA plays a critical role in the proliferation and differentiation of iPSCs and EC cells and protects the EBs from cytotoxic damage, thereby ensuring normal embryogenesis. Thus, the bioactive lipid AA may be explored for supplementation to benefit pregnant women treated with long-term anti-epileptic drugs to prevent in-utero fetal growth malformations.


Embryoid Bodies , Pluripotent Stem Cells , Humans , Female , Pregnancy , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Embryonic Stem Cells , Cell Differentiation
10.
Eur J Clin Nutr ; 77(6): 637-651, 2023 06.
Article En | MEDLINE | ID: mdl-35701524

Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-ß and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.


Autoimmune Diseases , Interleukin-17 , Humans , Dinoprostone , Inflammation , Cytokines , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Fatty Acids
11.
Lipids Health Dis ; 21(1): 73, 2022 Aug 18.
Article En | MEDLINE | ID: mdl-35982452

Syntaxin regulates pancreatic ß cell mass and participates in insulin secretion by regulating insulin exocytosis. In addition, syntaxin 4 reduces IFNγ and TNF-α signaling via NF-ĸB in islet ß-cells that facilitates plasma glucose sensing and appropriate insulin secretion. Arachidonic acid (AA) has potent anti-inflammatory actions and prevents the cytotoxic actions of alloxan and streptozotocin (STZ) against pancreatic ß cells and thus, prevents the development of type 1 diabetes mellitus (induced by alloxan and STZ) and by virtue of its anti-inflammatory actions protects against the development of type 2 diabetes mellitus (DM) induced by STZ in experimental animals that are models of type 1 and type 2 DM in humans. AA has been shown to interact with syntaxin and thus, potentiate exocytosis. AA enhances cell membrane fluidity, increases the expression of GLUT and insulin receptors, and brings about its anti-inflammatory actions at least in part by enhancing the formation of its metabolite lipoxin A4 (LXA4). Prostaglandin E2 (PGE2), the pro-inflammatory metabolite of AA, activates ventromedial hypothalamus (VMH) neurons of the hypothalamus and inhibits insulin secretion leading to reduced glucose tolerance and decreases insulin sensitivity in the skeletal muscle and liver. This adverse action of PGE2 on insulin release and action can be attributed to its (PGE2) pro-inflammatory action and inhibitory action on vagal tone (vagus nerve and its principal neurotransmitter acetylcholine has potent anti-inflammatory actions). High fat diet fed animals have hypothalamic inflammation due to chronic elevation of PGE2. Patients with type 2 DM show low plasma concentrations of AA and LXA4 and elevated levels of PGE2. Administration of AA enhances LXA4 formation without altering or reducing PGE2 levels and thus, tilts the balance more towards anti-inflammatory events. These results suggest that administration of AA is useful in the prevention and management of DM by enhancing the action of syntaxin, increasing cell membrane fluidity, and reducing VMH inflammation. Docosahexaenoic acid (DHA) has actions like AA: it increases cell membrane fluidity; has anti-inflammatory actions by enhancing the formation of its anti-inflammatory metabolites resolvins, protectins and maresins; interacts with syntaxin and enhance exocytosis in general and of insulin. But the DHA content of cell membrane is lower compared to AA and its content in brain is significant. Hence, it is likely DHA is important in neurotransmitters secretion and regulating hypothalamic inflammation. It is likely that a combination of AA and DHA can prevent DM.


Diabetes Mellitus, Type 2 , Insulins , Alloxan , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arachidonic Acid/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Dinoprostone , Docosahexaenoic Acids/pharmacology , Humans , Inflammation , Insulins/adverse effects , Qa-SNARE Proteins , Streptozocin
12.
Biomolecules ; 12(6)2022 06 07.
Article En | MEDLINE | ID: mdl-35740923

Radiation is pro-inflammatory in nature in view of its ability to induce the generation of reactive oxygen species (ROS), cytokines, chemokines, and growth factors with associated inflammatory cells. Cells are efficient in repairing radiation-induced DNA damage; however, exactly how this happens is not clear. In the present study, GLA reduced DNA damage (as evidenced by micronuclei formation) and enhanced metabolic viability, which led to an increase in the number of surviving RAW 264.7 cells in vitro by reducing ROS generation, and restoring the activities of desaturases, COX-1, COX-2, and 5-LOX enzymes, TNF-α/TGF-ß, NF-kB/IkB, and Bcl-2/Bax ratios, and iNOS, AIM-2, and caspases 1 and 3, to near normal. These in vitro beneficial actions were confirmed by in vivo studies, which revealed that the survival of female C57BL/6J mice exposed to lethal radiation (survival~20%) is significantly enhanced (to ~80%) by GLA treatment by restoring altered levels of duodenal HMGB1, IL-6, TNF-α, and IL-10 concentrations, as well as the expression of NF-kB, IkB, Bcl-2, Bax, delta-6-desaturase, COX-2, and 5-LOX genes, and pro- and anti-oxidant enzymes (SOD, catalase, glutathione), to near normal. These in vitro and in vivo studies suggest that GLA protects cells/tissues from lethal doses of radiation by producing appropriate changes in inflammation and its resolution in a timely fashion.


NF-kappa B , gamma-Linolenic Acid , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Female , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2 , Radiation, Ionizing , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein , gamma-Linolenic Acid/pharmacology
13.
Front Nutr ; 9: 890277, 2022.
Article En | MEDLINE | ID: mdl-35669071

The essential fatty acids (EFA), n3 alpha-linolenic acid (ALA), and n6 linoleic acid (LA) are of benefit in diabetes mellitus, but their mechanisms of action are unknown. We, therefore, examined the effects of EFAs on the metabolism, gut microbiota, and inflammatory and retinal histopathology indices in streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) animals, and we assessed the levels of vitreal lipoxin A4 (LXA4)-derived from LA-in subjects with diabetic retinopathy (DR). STZ-induced T1DM rats received LA or ALA 100 µg/day intraperitoneally on alternate days for 21 days, and their blood glucose; lipid profile; plasma, hepatic, and retinal fatty acid profiles (by gas chromatography); retinal histology; activities of hepatic and retinal desaturases; and inflammatory markers (by qRT-PCR) were evaluated. Gut microbiota composition was assayed by 16S rDNA sequencing technology of the fecal samples, and their short-chain fatty acids and bile acids were assayed by gas chromatography, liquid chromatography coupled with tandem mass spectrometry, respectively. The human vitreal fatty acid profiles of subjects with proliferative DR and LXA4 levels were measured. LA and ALA significantly improved the plasma glucose and lipid levels; increased the abundance of Ruminococcaceae (the ALA-treated group), Alloprevotella, Prevotellaceae_Ga6A1_group, Ruminococcaceae_UCG_010, and Ruminococcus_1 (the LA-treated group) bacteria; enhanced acetate and butyrate levels; and augmented fecal and hepatic concentrations of cholic acid, chenodeoxycholic acid, and tauro ursodeoxycholic acid in ALA- and LA-treated animals. Significant STZ-induced decreases in plasma LA, gamma-linolenic acid, arachidonic acid, and ALA levels reverted to near normal, following LA and ALA treatments. Significant changes in the expression of desaturases; COX-2, 5-LOX, and 12-LOX enzymes; and cytokines in T1DM were reverted to near normal by EFAs. DR subjects also had low retinal LXA4 levels. The results of the present study show that ALA and LA are of significant benefit in reversing metabolism, gut microbiota, and inflammatory and retinal index changes seen in T1DM, suggesting that EFAs are of benefit in diabetes mellitus.

14.
Nutrients ; 14(4)2022 Feb 10.
Article En | MEDLINE | ID: mdl-35215399

For normal maintenance of blood pressure and blood volume a well-balanced renin-angiotensin-aldosterone system (RAS) is necessary. For this purpose, renin is secreted as the situation demands by the juxtaglomerular cells (also called as granular cells) that are in the walls of the afferent arterioles. Juxtaglomerular cells can sense minute changes in the blood pressure and blood volume and accordingly synthesize, store, and secrete appropriate amounts of renin. Thus, when the blood pressure and blood volume are decreased JGA cells synthesize and secrete higher amounts of renin and when the blood pressure and blood volume is increased the synthesis and secretion of renin is decreased such that homeostasis is restored. To decipher this important function, JGA cells (renin cells) need to sense and transmit the extracellular physical forces to their chromatin to control renin gene expression for appropriate renin synthesis. The changes in perfusion pressure are sensed by Integrin ß1 that is transmitted to the renin cell's nucleus via lamin A/C that produces changes in the architecture of the chromatin. This results in an alteration (either increase or decrease) in renin gene expression. Cell membrane is situated in an unique location since all stimuli need to be transmitted to the cell nucleus and messages from the DNA to the cell external environment can be conveyed only through it. This implies that cell membrane structure and integrity is essential for all cellular functions. Cell membrane is composed to proteins and lipids. The lipid components of the cell membrane regulate its (cell membrane) fluidity and the way the messages are transmitted between the cell and its environment. Of all the lipids present in the membrane, arachidonic acid (AA) forms an important constituent. In response to pressure and other stimuli, cellular and nuclear shape changes occur that render nucleus to act as an elastic mechanotransducer that produces not only changes in cell shape but also in its dynamic behavior. Cell shape changes in response to external pressure(s) result(s) in the activation of cPLA2 (cytosolic phospholipase 2)-AA pathway that stretches to recruit myosin II which produces actin-myosin cytoskeleton contractility. Released AA can undergo peroxidation and peroxidized AA binds to DNA to regulate the expression of several genes. Alterations in the perfusion pressure in the afferent arterioles produces parallel changes in the renin cell membrane leading to changes in renin release. AA and its metabolic products regulate not only the release of renin but also changes in the vanilloid type 1 (TRPV1) expression in renal sensory nerves. Thus, AA and its metabolites function as intermediate/mediator molecules in transducing changes in perfusion and mechanical pressures that involves nuclear mechanotransduction mechanism. This mechanotransducer function of AA has relevance to the synthesis and release of insulin, neurotransmitters, and other soluble mediators release by specialized and non-specialized cells. Thus, AA plays a critical role in diseases such as diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, sepsis, lupus, rheumatoid arthritis, and cancer.


Juxtaglomerular Apparatus , Renin , Arachidonic Acid/metabolism , Juxtaglomerular Apparatus/blood supply , Juxtaglomerular Apparatus/metabolism , Mechanotransduction, Cellular , Pressoreceptors , Renin/metabolism
15.
Front Endocrinol (Lausanne) ; 13: 1053879, 2022.
Article En | MEDLINE | ID: mdl-36778598

Our previous studies revealed that certain endogenous low molecular weight lipids have potent anti-diabetic actions. Of all, arachidonic acid (AA) and its anti-inflammatory and inflammation resolving metabolite lipoxin A4 (LXA4) are the most potent anti-diabetic molecules. Similar anti-diabetic action is also shown by resolvins. In our efforts to identify other similar lipid based anti-diabetic molecules, we investigated potential anti-diabetic action of protectin DX that also has anti-inflammatory and inducer of inflammation resolution action(s) like LXA4. Protectin DX {10(S),17(S)-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid, also called as 10(S),17(S)-DiHDoHE)} prevented the development of streptozotocin-induced type 1 and type 2 diabetes mellitus in Swiss male albino mice. Protectin DX showed potent anti-inflammatory, antioxidant and anti-apoptotic actions that could explain its anti-diabetic action. In view of these beneficial actions, efforts need to be developed to exploit PDX and other similar compounds as potential anti-diabetic molecule in humans.


Diabetes Mellitus, Type 2 , Humans , Animals , Mice , Male , Diabetes Mellitus, Type 2/drug therapy , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Streptozocin , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
16.
Biomolecules ; 11(12)2021 12 14.
Article En | MEDLINE | ID: mdl-34944517

Arachidonic acid (AA) metabolism is critical in the initiation and resolution of inflammation. Prostaglandin E2 (PGE2) and leukotriene B4/D4/E4 (LTB4/LD4/LTE4), derived from AA, are involved in the initiation of inflammation and regulation of immune response, hematopoiesis, and M1 (pro-inflammatory) macrophage facilitation. Paradoxically, PGE2 suppresses interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and triggers the production of lipoxin A4 (LXA4) from AA to initiate inflammation resolution process and augment regeneration of tissues. LXA4 suppresses PGE2 and LTs' synthesis and action and facilitates M2 macrophage generation to resolve inflammation. AA inactivates enveloped viruses including SARS-CoV-2. Macrophages, NK cells, T cells, and other immunocytes release AA and other bioactive lipids to produce their anti-microbial actions. AA, PGE2, and LXA4 have cytoprotective actions, regulate nitric oxide generation, and are critical to maintain cell shape and control cell motility and phagocytosis, and inflammation, immunity, and anti-microbial actions. Hence, it is proposed that AA plays a crucial role in the pathobiology of ischemia/reperfusion injury, sepsis, COVID-19, and other critical illnesses, implying that its (AA) administration may be of significant benefit in the prevention and amelioration of these diseases.


Fatty Acids, Essential/metabolism , Inflammation/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Dinoprostone/metabolism , Humans , Inflammation/pathology , Leukotriene B4/metabolism , Lipoxins/metabolism , SARS-CoV-2/metabolism
17.
Indian J Ophthalmol ; 69(11): 3226-3234, 2021 Nov.
Article En | MEDLINE | ID: mdl-34708778

PURPOSE: To evaluate and correlate retinal microvascular changes in prediabetic and diabetic patients with functional and systemic parameters. METHODS: Optical coherence tomography angiography (OCTA) was performed on all subjects after medical evaluation and laboratory investigations for blood sugar, glycosylated hemoglobin, and others. Automated quantification of vascular indices of the superficial plexus were analyzed. RESULTS: Hundred and eleven persons (222 eyes) were grouped into prediabetic (PDM) (60 eyes), diabetic without retinopathy (NDR) (56 eyes), diabetic with retinopathy (DR) (66 eyes), and healthy controls (CTR) (40 eyes). The superficial retinal capillary plexus showed no significant changes in the prediabetic and NDR groups; however, central foveal thickness (CFT) was significantly reduced in PDM (P = 0.04). The circularity of the foveal avascular zone (FAZ) (P = 0.03) and the vessel density (VD) (P = 0.01) showed significant reduction from PDM to NDR. All vascular parameters were significantly reduced in DR and correlated with disease severity. The CFT correlated significantly with FAZ area. The VD and perfusion density were seen to correlate significantly with HbA1c and contrast sensitivity. The visual acuity was significantly correlated with the FAZ. Logistic regression revealed VD [OR 20.42 (7.9-53)] and FAZ perimeter [OR 9.8 (4.2-23.2)] as the strongest predictors of DR. CONCLUSION: The changes in OCTA can help predict onset of DR. FAZ changes are seen in early stages and are correlated well with systemic parameters, making it an easy target to monitor and screen for severity of DR. Significant reduction in the CFT in PDM suggests that neuronal damage precedes vascular changes.


Diabetic Retinopathy , Prediabetic State , Diabetic Retinopathy/diagnosis , Fluorescein Angiography , Fundus Oculi , Humans , Prediabetic State/diagnosis , Retinal Vessels/diagnostic imaging , Retrospective Studies , Tomography, Optical Coherence
18.
Lipids Health Dis ; 20(1): 83, 2021 Aug 01.
Article En | MEDLINE | ID: mdl-34334139

Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.


Diabetes Mellitus, Type 2/etiology , Hypertension/etiology , Immunity , Inflammation/etiology , Sodium Chloride, Dietary/adverse effects , Animals , Humans , Sodium Chloride, Dietary/metabolism
19.
Eur J Clin Nutr ; 75(10): 1528-1531, 2021 10.
Article En | MEDLINE | ID: mdl-34131297
20.
Biomolecules ; 11(2)2021 02 08.
Article En | MEDLINE | ID: mdl-33567774

Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.


Aging/metabolism , Cell Membrane , Lipid Metabolism , Animals , Anti-Infective Agents/metabolism , Anti-Inflammatory Agents/metabolism , Eicosanoids/metabolism , Fatty Acids, Essential/metabolism , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Mice
...