Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EJNMMI Phys ; 11(1): 11, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285319

RESUMEN

BACKGROUND: Quantification of the cerebral metabolic rate of glucose (CMRGlu) by dynamic [18F]FDG PET requires invasive arterial sampling. Alternatives to using an arterial input function (AIF) include the simultaneous estimation (SIME) approach, which models the image-derived input function (IDIF) by a series of exponentials with coefficients obtained by fitting time activity curves (TACs) from multiple volumes-of-interest. A limitation of SIME is the assumption that the input function can be modelled accurately by a series of exponentials. Alternatively, we propose a SIME approach based on the two-tissue compartment model to extract a high signal-to-noise ratio (SNR) model-derived input function (MDIF) from the whole-brain TAC. The purpose of this study is to present the MDIF approach and its implementation in the analysis of animal and human data. METHODS: Simulations were performed to assess the accuracy of the MDIF approach. Animal experiments were conducted to compare derived MDIFs to measured AIFs (n = 5). Using dynamic [18F]FDG PET data from neurologically healthy volunteers (n = 18), the MDIF method was compared to the original SIME-IDIF. Lastly, the feasibility of extracting parametric images was investigated by implementing a variational Bayesian parameter estimation approach. RESULTS: Simulations demonstrated that the MDIF can be accurately extracted from a whole-brain TAC. Good agreement between MDIFs and measured AIFs was found in the animal experiments. Similarly, the MDIF-to-IDIF area-under-the-curve ratio from the human data was 1.02 ± 0.08, resulting in good agreement in grey matter CMRGlu: 24.5 ± 3.6 and 23.9 ± 3.2 mL/100 g/min for MDIF and IDIF, respectively. The MDIF method proved superior in characterizing the first pass of [18F]FDG. Groupwise parametric images obtained with the MDIF showed the expected spatial patterns. CONCLUSIONS: A model-driven SIME method was proposed to derive high SNR input functions. Its potential was demonstrated by the good agreement between MDIFs and AIFs in animal experiments. In addition, CMRGlu estimates obtained in the human study agreed to literature values. The MDIF approach requires fewer fitting parameters than the original SIME method and has the advantage that it can model the shape of any input function. In turn, the high SNR of the MDIFs has the potential to facilitate the extraction of voxelwise parameters when combined with robust parameter estimation methods such as the variational Bayesian approach.

2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835448

RESUMEN

Many chronic inflammatory conditions are mediated by an increase in the number of monocytes in peripheral circulation, differentiation of monocytes to macrophages, and different macrophage subpopulations during pro- and anti-inflammatory stages of tissue injury. When hepcidin secretion is stimulated during inflammation, the iron export protein ferroportin is targeted for degradation on a limited number of cell types, including monocytes and macrophages. Such changes in monocyte iron metabolism raise the possibility of non-invasively tracking the activity of these immune cells using magnetic resonance imaging (MRI). We hypothesized that hepcidin-mediated changes in monocyte iron regulation influence both cellular iron content and MRI relaxation rates. In response to varying conditions of extracellular iron supplementation, ferroportin protein levels in human THP-1 monocytes decreased two- to eightfold, consistent with paracrine/autocrine regulation of iron export. Following hepcidin treatment, ferroportin protein levels further decreased two- to fourfold. This was accompanied by an approximately twofold increase in total transverse relaxation rate, R2*, compared to non-supplemented cells. A positive correlation between total cellular iron content and R2* improved from moderate to strong in the presence of hepcidin. These findings suggest that hepcidin-mediated changes detected in monocytes using MRI could be valuable for in vivo cell tracking of inflammatory responses.


Asunto(s)
Hepcidinas , Inflamación , Hierro , Monocitos , Humanos , Hepcidinas/metabolismo , Hierro/metabolismo , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Monocitos/metabolismo , Inflamación/metabolismo
3.
EJNMMI Res ; 13(1): 1, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633702

RESUMEN

BACKGROUND: The purpose of this study was to assess the feasibility of using a minimally invasive simultaneous estimation method (SIME) to quantify the binding of the 18-kDa translocator protein tracer [18F]FEPPA. Arterial sampling was avoided by extracting an image-derived input function (IDIF) that was metabolite-corrected using venous blood samples. The possibility of reducing scan duration to 90 min from the recommended 2-3 h was investigated by assuming a uniform non-displaceable distribution volume (VND) to simplify the SIME fitting. RESULTS: SIME was applied to retrospective data from healthy volunteers and was comprised of both high-affinity binders (HABs) and mixed-affinity binders (MABs). Estimates of global VND and regional total distribution volume (VT) from SIME were not significantly different from values obtained using a two-tissue compartment model (2CTM). Regional VT estimates were greater for HABs compared to MABs for both the 2TCM and SIME, while the SIME estimates had lower inter-subject variability (41 ± 17% reduction). Binding potential (BPND) values calculated from regional VT and brain-wide VND estimates were also greater for HABs, and reducing the scan time from 120 to 90 min had no significant effect on BPND. The feasibility of using venous metabolite correction was evaluated in a large animal model involving a simultaneous collection of arterial and venous samples. Strong linear correlations were found between venous and arterial measurements of the blood-to-plasma ratio and the remaining [18F]FEPPA fraction. Lastly, estimates of BPND and the specific distribution volume (i.e., VS = VT - VND) from a separate group of healthy volunteers (90 min scan time, venous-scaled IDIFs) agreed with estimates from the retrospective data for both genotypes. CONCLUSIONS: The results of this study demonstrate that accurate estimates of regional VT, BPND and VS can be obtained by applying SIME to [18F]FEPPA data. Furthermore, the application of SIME enabled the scan time to be reduced to 90 min, and the approach worked well with IDIFs that were scaled and metabolite-corrected using venous blood samples.

4.
Neuroimage ; 256: 119261, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500806

RESUMEN

Routine clinical use of absolute PET quantification techniques is limited by the need for serial arterial blood sampling for input function and more importantly by the lack of automated pharmacokinetic analysis tools that can be readily implemented in clinic with minimal effort. PET/MRI provides the ability for absolute quantification of PET probes without the need for serial arterial blood sampling using image-derived input functions (IDIFs). Here we introduce caliPER, a modular and scalable software for simplified pharmacokinetic modeling of PET probes with irreversible uptake or binding based on PET/MR IDIFs and Patlak Plot analysis. caliPER generates regional values or parametric maps of net influx rate (Ki) using reconstructed dynamic PET images and anatomical MRI aligned to PET for IDIF vessel delineation. We evaluated the performance of caliPER for blood-free region-based and pixel-wise Patlak analyses of [18F] FDG by comparing caliPER IDIF to serial arterial blood input functions and its application in imaging brain glucose hypometabolism in Frontotemporal dementia. IDIFs corrected for partial volume errors including spill-out and spill-in effects were similar to arterial blood input functions with a general bias of around 6-8%, even for arteries <5 mm. The Ki and cerebral metabolic rate of glucose estimated using caliPER IDIF were similar to estimates using arterial blood sampling (<2%) and within limits of whole brain values reported in literature. Overall, caliPER is a promising tool for irreversible PET tracer quantification and can simplify the ability to perform parametric analysis in clinical settings without the need for blood sampling.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Glucosa/metabolismo , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Programas Informáticos
5.
PLoS One ; 14(6): e0217842, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170273

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive imaging modality used in longitudinal cell tracking. Previous studies suggest that MagA, a putative iron transport protein from magnetotactic bacteria, is a useful gene-based magnetic resonance contrast agent. Hemagglutinin-tagged MagA was stably expressed in undifferentiated embryonic mouse teratocarcinoma, multipotent P19 cells to provide a suitable model for tracking these cells during differentiation. Western blot and immunocytochemistry confirmed the expression and membrane localization of MagA in P19 cells. Surprisingly, elemental iron analysis using inductively-coupled plasma mass spectrometry revealed significant iron uptake in both parental and MagA-expressing P19 cells, cultured in the presence of iron-supplemented medium. Withdrawal of this extracellular iron supplement revealed unexpected iron export activity in P19 cells, which MagA expression attenuated. The influence of iron supplementation on parental and MagA-expressing cells was not reflected by longitudinal relaxation rates. Measurement of transverse relaxation rates (R2* and R2) reflected changes in total cellular iron content but did not clearly distinguish MagA-expressing cells from the parental cell type, despite significant differences in the uptake and retention of total cellular iron. Unlike other cell types, the reversible component R2' (R2* ‒ R2) provided only a moderately strong correlation to amount of cellular iron, normalized to amount of protein. This is the first report to characterize MagA expression in a previously unrecognized iron exporting cell type. The interplay between contrast gene expression and systemic iron metabolism substantiates the potential for diverting cellular iron toward the formation of a novel iron compartment, however rudimentary when using a single magnetotactic bacterial gene expression system like magA. Since relatively few mammalian cells export iron, the P19 cell line provides a tractable model of ferroportin activity, suitable for magnetic resonance analysis of key iron-handling activities and their influence on gene-based MRI contrast.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Animales , Línea Celular Tumoral , Rastreo Celular/métodos , Medios de Contraste/metabolismo , Expresión Génica/genética , Genes Reporteros/genética , Imagen por Resonancia Magnética/métodos , Ratones , Células Madre Multipotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA