Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 17(5): e1009247, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34014920

RESUMEN

Germline stem cells divide asymmetrically to produce one new daughter stem cell and one daughter cell that will subsequently undergo meiosis and differentiate to generate the mature gamete. The silent sister hypothesis proposes that in asymmetric divisions, the selective inheritance of sister chromatids carrying specific epigenetic marks between stem and daughter cells impacts cell fate. To facilitate this selective inheritance, the hypothesis specifically proposes that the centromeric region of each sister chromatid is distinct. In Drosophila germ line stem cells (GSCs), it has recently been shown that the centromeric histone CENP-A (called CID in flies)-the epigenetic determinant of centromere identity-is asymmetrically distributed between sister chromatids. In these cells, CID deposition occurs in G2 phase such that sister chromatids destined to end up in the stem cell harbour more CENP-A, assemble more kinetochore proteins and capture more spindle microtubules. These results suggest a potential mechanism of 'mitotic drive' that might bias chromosome segregation. Here we report that the inner kinetochore protein CENP-C, is required for the assembly of CID in G2 phase in GSCs. Moreover, CENP-C is required to maintain a normal asymmetric distribution of CID between stem and daughter cells. In addition, we find that CID is lost from centromeres in aged GSCs and that a reduction in CENP-C accelerates this loss. Finally, we show that CENP-C depletion in GSCs disrupts the balance of stem and daughter cells in the ovary, shifting GSCs toward a self-renewal tendency. Ultimately, we provide evidence that centromere assembly and maintenance via CENP-C is required to sustain asymmetric divisions in female Drosophila GSCs.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Epigénesis Genética , Células Germinativas/metabolismo , Células Madre/metabolismo , Animales , Autorrenovación de las Células , Senescencia Celular , Proteínas Cromosómicas no Histona/deficiencia , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/metabolismo , Femenino , Fase G2 , Masculino , Profase , Fase S
2.
Development ; 143(8): 1400-12, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27095496

RESUMEN

The centromere-specific histone CENP-A is the key epigenetic determinant of centromere identity. Whereas most histones are removed from mature sperm, CENP-A is retained to mark paternal centromeres. In Drosophila males we show that the centromere assembly factors CAL1 and CENP-C are required for meiotic chromosome segregation, CENP-A assembly and maintenance on sperm, as well as fertility. In meiosis, CENP-A accumulates with CAL1 in nucleoli. Furthermore, we show that CENP-C normally limits the release of CAL1 and CENP-A from nucleoli for proper centromere assembly in meiotic prophase I. Finally, we show that RNA polymerase I transcription is required for efficient CENP-A assembly in meiosis, as well as centromere tethering to nucleoli.


Asunto(s)
Nucléolo Celular/fisiología , Centrómero/fisiología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Histonas/fisiología , Meiosis , Animales , Proteína A Centromérica , Drosophila melanogaster , Fertilidad , Masculino , Profase Meiótica I , Mutación , ARN Polimerasa I/metabolismo , Espermatogénesis , Espermatozoides/citología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...