Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(7): e2201720, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36447307

RESUMEN

Neural stem cells (NSC) have tremendous potential for therapeutic regeneration of diseased or traumatized neural tissues, including injured spinal cord. However, transplanted NSC suffer from low cell survival and uncontrolled differentiation, limiting in vivo efficacy. Here, this issue is tackled by delivery through silk-collagen protein hydrogels that are stiffness-matched, stress-relaxing, and shear-thinning. The mechanically-tuned hydrogels protect NSC reprogrammed from fibroblasts (iNSC) initially from injection shear-stress, and enhance long-term survival over 12 weeks. Hydrogel-iNSC treatment alleviates neural inflammation, with reduced inflammatory cells and lesions than NSC-only. The iNSC migrate from the hydrogel into surrounding tissues, secrete up-regulated neurotrophic factors, and differentiate into neural cell subtypes, forming synapses. More serotonergic axons are observed in the lesion cavity, and locomotor functions are improved in hydrogel-iNSC than in iNSC-only. This study highlights the ability of mechanically-tuned protein hydrogels to protect iNSC from the injection stress and severe inflammatory environment, allowing them to differentiate and function to recover the injured spinal cord.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratas , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Hidrogeles/farmacología , Hidrogeles/metabolismo , Seda/metabolismo , Médula Espinal/patología , Colágeno/metabolismo , Recuperación de la Función
2.
J Tissue Eng ; 13: 20417314221086491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340425

RESUMEN

Spinal cord injury (SCI) leads to disruption of the blood-spinal cord barrier, hemorrhage, and tissue edema, which impair blood circulation and induce ischemia. Angiogenesis after SCI is an important step in the repair of damaged tissues, and the extent of angiogenesis strongly correlates with the neural regeneration. Various biomaterials have been developed to promote angiogenesis signaling pathways, and angiogenic self-assembling peptides are useful for producing diverse supramolecular structures with tunable functionality. RADA16 (Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological conditions, is a self-assembling peptide that can provide mechanical support for tissue regeneration and reportedly has diverse roles in wound healing. In this study, we applied an injectable form of RADA16 with or without the neuropeptide substance P to the contused spinal cords of rats and examined angiogenesis within the damaged spinal cord and subsequent functional improvement. Histological and immunohistochemical analyses revealed that the inflammatory cell population in the lesion cavity was decreased, the vessel number and density around the damaged spinal cord were increased, and the levels of neurofilaments within the lesion cavity were increased in SCI rats that received RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover, real-time PCR analysis of damaged spinal cord tissues showed that IL-10 expression was increased and that locomotor function (as assessed by the Basso, Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was significantly improved in the RADA16/SP group compared to the control group. Our findings indicate that RADA16 modified with substance P effectively stimulates angiogenesis within the damaged spinal cord and is a candidate agent for promoting functional recovery post-SCI.

3.
Cells ; 10(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445717

RESUMEN

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


Asunto(s)
Metilación de ADN/genética , Condicionamiento Físico Animal , Traumatismos de la Médula Espinal/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Axones/patología , Polaridad Celular , Epigénesis Genética , Femenino , Hidroxilación , Inflamación/patología , Macrófagos/patología , Corteza Motora/metabolismo , Regeneración Nerviosa , Ratas Sprague-Dawley , Recuperación de la Función , Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Vejiga Urinaria Neurogénica/etiología
4.
Cells ; 9(5)2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466098

RESUMEN

Axonal regeneration after spinal cord injury (SCI) is difficult to achieve, and no fundamental treatment can be applied in clinical settings. DNA methylation has been suggested to play a role in regeneration capacity and neuronal growth after SCI by controlling the expression of regeneration-associated genes (RAGs). The aim of this study was to examine changes in neuronal DNA methylation status after SCI and to determine whether modulation of DNA methylation with ascorbic acid can enhance neuronal regeneration or functional restoration after SCI. Changes in epigenetic marks (5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC)); the expression of Ten-eleven translocation (Tet) family genes; and the expression of genes related to inflammation, regeneration, and degeneration in the brain motor cortex were determined following SCI. The 5hmC level within the brain was increased after SCI, especially in the acute and subacute stages, and the mRNA levels of Tet gene family members (Tet1, Tet2, and Tet3) were also increased. Administration of ascorbic acid (100 mg/kg) to SCI rats enhanced 5hmC levels; increased the expression of the Tet1, Tet2, and Tet3 genes within the brain motor cortex; promoted axonal sprouting within the lesion cavity of the spinal cord; and enhanced recovery of locomotor function until 12 weeks. In conclusion, we found that epigenetic status in the brain motor cortex is changed after SCI and that epigenetic modulation using ascorbic acid may contribute to functional recovery after SCI.


Asunto(s)
Ácido Ascórbico/farmacología , Epigénesis Genética/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/patología , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Contusiones , Dioxigenasas/genética , Dioxigenasas/metabolismo , Femenino , Corteza Motora/patología , Corteza Motora/fisiopatología , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos
5.
Acta Biomater ; 101: 357-371, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711898

RESUMEN

Spinal cord injury (SCI) is a devastating lesion lacking effective treatment options currently available in clinics. The inflammatory process exacerbates the extent of the lesion through a secondary injury mechanism, where proinflammatory classically activated macrophages (M1) are prevalent at the lesion site. However, the polarized alternatively activated anti-inflammatory macrophages (M2) are known to play an important role in wound healing and regeneration following SCI. Herein, we introduce porcine brain decellularized extracellular matrix (dECM) to modulate the macrophages in the injured spinal cord. The hydrogels with collagen and dECM at various dECM concentrations (1, 5, and 8 mg/ml) were used to cultivate primary macrophages and neurons. The dECM hydrogels were shown to promote the polarization of macrophages toward M2 phase and the neurite outgrowth of cortical and hippocampal neurons. When the dECM hydrogels were applied to rat SCI models, the proportion of M1 and M2 macrophages in the injured spinal cord was substantially altered. When received dECM concetration of 5 mg/ml, the expression of molecules associated with M2 (CD206, arginase1, and IL-10) was significantly increased. Consistently, the population of total macrophages and cavity area were substantially reduced in the dECM-treated groups. As a result, the locomotor functions of injured spinal cord, as assessed by BBB and ladder scoring, were significantly improved. Collectively, the porcine brain dECM with optimal concentration promotes functional recovery in SCI models through the activation of M2 macrophages, suggesting the promising use of the engineered hydrogels in the treatment of acute SCI. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating lesion, lacking effective treatment options currently available in clinics. Here we delineated that the treatment of injured spinal cord with porcine brain decellularized matrix-based hydrogels for the first time, and could modulate the macrophage polarization and the ultimate functional recovery. When appropriate formulations were applied to a contused spinal cord model in rats, the decellularized matrix hydrogels shifted the macrophages to polarize to pro-regenerative M2 phenotype, decreased the size of lesion cavity, and finally promoted the locomotor functions until 8 weeks following the injury. We consider this work can significantly augment the matrix(biomaterial)-based therapeutic options, as an alternative to drug or cell-free approaches, for the treatment of acute injury of spinal cord.


Asunto(s)
Encéfalo/metabolismo , Polaridad Celular , Matriz Extracelular/trasplante , Macrófagos/citología , Movimiento , Recuperación de la Función , Traumatismos de la Médula Espinal/fisiopatología , Animales , Polaridad Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Matriz Extracelular/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hidrogeles/farmacología , Macrófagos/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...