Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Epilepsia ; 65(5): 1462-1474, 2024 May.
Article En | MEDLINE | ID: mdl-38436479

OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.


Blood-Brain Barrier , Drug Resistant Epilepsy , Magnetic Resonance Imaging , Humans , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/diagnostic imaging , Female , Male , Adult , Middle Aged , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Young Adult , Prospective Studies , Epilepsy/physiopathology , Epilepsy/diagnostic imaging
2.
Sci Data ; 10(1): 475, 2023 07 20.
Article En | MEDLINE | ID: mdl-37474522

Automated detection of lesions using artificial intelligence creates new standards in medical imaging. For people with epilepsy, automated detection of focal cortical dysplasias (FCDs) is widely used because subtle FCDs often escape conventional neuroradiological diagnosis. Accurate recognition of FCDs, however, is of outstanding importance for affected people, as surgical resection of the dysplastic cortex is associated with a high chance of postsurgical seizure freedom. Here, we make publicly available a dataset of 85 people affected by epilepsy due to FCD type II and 85 healthy control persons. We publish 3D-T1 and 3D-FLAIR, manually labeled regions of interest, and carefully selected clinical features. The open presurgery MRI dataset may be used to validate existing automated algorithms of FCD detection as well as to create new approaches. Most importantly, it will enable comparability of already existing approaches and support a more widespread use of automated lesion detection tools.


Epilepsy , Focal Cortical Dysplasia , Humans , Artificial Intelligence , Epilepsy/diagnostic imaging , Epilepsy/surgery , Focal Cortical Dysplasia/diagnostic imaging , Focal Cortical Dysplasia/surgery , Magnetic Resonance Imaging
3.
Epilepsia ; 64(5): 1093-1112, 2023 05.
Article En | MEDLINE | ID: mdl-36721976

Focal cortical dysplasias (FCDs) are malformations of cortical development and one of the most common pathologies causing pharmacoresistant focal epilepsy. Resective neurosurgery yields high success rates, especially if the full extent of the lesion is correctly identified and completely removed. The visual assessment of magnetic resonance imaging does not pinpoint the FCD in 30%-50% of cases, and half of all patients with FCD are not amenable to epilepsy surgery, partly because the FCD could not be sufficiently localized. Computational approaches to FCD detection are an active area of research, benefitting from advancements in computer vision. Automatic FCD detection is a significant challenge and one of the first clinical grounds where the application of artificial intelligence may translate into an advance for patients' health. The emergence of new methods from the combination of health and computer sciences creates novel challenges. Imaging data need to be organized into structured, well-annotated datasets and combined with other clinical information, such as histopathological subtypes or neuroimaging characteristics. Algorithmic output, that is, model prediction, requires a technically correct evaluation with adequate metrics that are understandable and usable for clinicians. Publication of code and data is necessary to make research accessible and reproducible. This critical review introduces the field of automatic FCD detection, explaining underlying medical and technical concepts, highlighting its challenges and current limitations, and providing a perspective for a novel research environment.


Epilepsy , Focal Cortical Dysplasia , Humans , Artificial Intelligence , Epilepsy/diagnostic imaging , Epilepsy/surgery , Neuroimaging , Algorithms
4.
Brain Pathol ; 33(2): e13147, 2023 03.
Article En | MEDLINE | ID: mdl-36599709

The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.


Epilepsy, Temporal Lobe , Epilepsy , Humans , Epilepsy, Temporal Lobe/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Astrocytes/metabolism , Epilepsy/pathology
5.
Epilepsy Behav ; 128: 108560, 2022 03.
Article En | MEDLINE | ID: mdl-35066389

Shape-based markers have entered the field of morphometric neuroimaging analysis as a second mainstay alongside conventional volumetric approaches. We aimed to assess the added value of shape description for the analysis of lesional and autoimmune temporal lobe epilepsy (TLE) focusing on hippocampus and amygdala. We retrospectively investigated MRI and clinical data from 65 patients with lesional TLE (hippocampal sclerosis (HS) and astrogliosis) and from 62 patients with limbic encephalitis (LE) with serologically proven autoantibodies. Surface reconstruction and volumetric segmentation were performed with FreeSurfer. For the shape analysis, we used BrainPrint, a tool that utilizes eigenvalues of the Laplace-Beltrami operator on triangular meshes to calculate intra-subject asymmetry. Psychometric tests of memory performance were ascertained, to evaluate clinical relevance of the shape descriptor. The potential benefit of shape in addition to volumetric information for classification was assessed by five-fold repeated cross validation and logistic regression. For the LE group, the best performing classification model consisted of a combination of volume and shape asymmetry (mean AUC = 0.728), the logistic regression model was significantly improved considering both modalities instead of just volume asymmetry. For lesional TLE, the best model only considered volumetric information (mean AUC = 0.867). Shape asymmetry of the hippocampus was largely associated with verbal memory performance only in LE patients (OR = 1.07, p = 0.02). For lesional TLE, shape description is robust, but redundant when compared to volumetric approaches. For LE, in contrast, shape asymmetry as a complementary modality significantly improves the detection of subtle morphometric changes and is further associated with memory performance, which underscores the clinical relevance of shape asymmetry as a novel imaging biomarker.


Epilepsy, Temporal Lobe , Amygdala/diagnostic imaging , Epilepsy, Temporal Lobe/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies
6.
Ann Clin Transl Neurol ; 8(9): 1796-1808, 2021 09.
Article En | MEDLINE | ID: mdl-34351075

OBJECTIVE: Using multimodal imaging, we tested the hypothesis that patients after hemispherotomy recruit non-primary motor areas and non-pyramidal descending motor fibers to restore motor function of the impaired limb. METHODS: Functional and structural MRI data were acquired in a group of 25 patients who had undergone hemispherotomy and in a matched group of healthy controls. Patients' motor impairment was measured using the Fugl-Meyer Motor Assessment. Cortical areas governing upper extremity motor-control were identified by task-based functional MRI. The resulting areas were used as nodes for functional and structural connectivity analyses. RESULTS: In hemispherotomy patients, movement of the impaired upper extremity was associated to widespread activation of non-primary premotor areas, whereas movement of the unimpaired one and of the control group related to activations prevalently located in the primary motor cortex (all p ≤ 0.05, FWE-corrected). Non-pyramidal tracts originating in premotor/supplementary motor areas and descending through the pontine tegmentum showed relatively higher structural connectivity in patients (p < 0.001, FWE-corrected). Significant correlations between structural connectivity and motor impairment were found for non-pyramidal (p = 0.023, FWE-corrected), but not for pyramidal connections. INTERPRETATION: A premotor/supplementary motor network and non-pyramidal fibers seem to mediate motor function in patients after hemispherotomy. In case of hemispheric lesion, the homologous regions in the contralesional hemisphere may not compensate the resulting motor deficit, but the functionally redundant premotor network.


Connectome , Drug Resistant Epilepsy/surgery , Hemispherectomy , Motor Cortex/physiopathology , Nerve Net/physiopathology , Upper Extremity/physiopathology , Adolescent , Adult , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Motor Cortex/diagnostic imaging , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Young Adult
7.
Article En | MEDLINE | ID: mdl-34389659

BACKGROUND AND OBJECTIVE: Rasmussen encephalitis (RE) is characterized by its unilateral cerebral involvement. However, both ipsi- and contralesional cerebellar atrophy have been anecdotally reported raising questions about the nature and extent of infratentorial findings. Using MRI, we morphometrically investigated the cerebellum and hypothesized abnormalities beyond the effects of secondary atrophy, implicating a primary involvement of the cerebellum by RE. METHODS: Voxel-based morphometry of the cerebellum and brainstem was conducted in 57 patients with RE and in 57 matched controls. Furthermore, patient-specific asymmetry indices (AIs) of cerebellar morphometry and fluid-attenuated inversion recovery (FLAIR) intensity were calculated. Using diffusion tensor imaging, the integrity of the cortico-ponto-cerebellar (CPC) tract was assessed. Finally, a spatial independent component analysis (ICA) was used to compare atrophy patterns between groups. RESULTS: Patients with RE showed bilateral cerebellar and predominantly ipsilesional mesencephalic atrophy (p < 0.01). Morphometric AIs revealed ipsilesional < contralesional asymmetry in 27 and ipsilesional > contralesional asymmetry in 30 patients. In patients with predominant ipsilesional atrophy, morphometric AIs strongly correlated with FLAIR intensity AIs (r = 0.86, p < 0.0001). Fractional anisotropy was lower for ipsilesional-to-contralesional CPC tracts than opposite tracts (T = 2.30, p < 0.05). ICA revealed bilateral and strictly ipsi- and contralesional atrophy components in patients with RE (p < 0.05). DISCUSSION: We demonstrated atrophy of the ipsilesional-to-contralesional CPC pathway and, consequently, interpret the loss of contralesional gray matter as secondary crossed cerebellar atrophy. The ipsilesional cerebellar atrophy, however, defies this explanation. Based on FLAIR hyperintensities, we interpret ipsilesional atrophy to be due to inflammation in the scope of a primary involvement of the cerebellum by RE.


Cerebellum/pathology , Encephalitis/pathology , Gray Matter/pathology , White Matter/pathology , Adolescent , Adult , Atrophy/pathology , Brain Stem/diagnostic imaging , Brain Stem/pathology , Cerebellum/diagnostic imaging , Child , Child, Preschool , Diffusion Tensor Imaging , Encephalitis/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Retrospective Studies , Young Adult
8.
Acta Neuropathol ; 142(4): 729-759, 2021 10.
Article En | MEDLINE | ID: mdl-34292399

Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.


Epilepsy, Temporal Lobe/complications , Hippocampus/metabolism , Iron Metabolism Disorders/etiology , Iron/metabolism , Status Epilepticus/complications , Adult , Aged , Aged, 80 and over , Animals , Astrocytes/metabolism , Astrocytes/pathology , Case-Control Studies , Cell Culture Techniques , Disease Models, Animal , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Female , Humans , Iron Metabolism Disorders/pathology , Male , Middle Aged , Oxidative Stress/physiology , Rats , Status Epilepticus/metabolism , Status Epilepticus/pathology
10.
Epilepsia ; 62(4): 1005-1021, 2021 04.
Article En | MEDLINE | ID: mdl-33638457

OBJECTIVE: Focal cortical dysplasias (FCDs) are a common cause of drug-resistant focal epilepsy but frequently remain undetected by conventional magnetic resonance imaging (MRI) assessment. The visual detection can be facilitated by morphometric analysis of T1-weighted images, for example, using the Morphometric Analysis Program (v2018; MAP18), which was introduced in 2005, independently validated for its clinical benefits, and successfully integrated in standard presurgical workflows of numerous epilepsy centers worldwide. Here we aimed to develop an artificial neural network (ANN) classifier for robust automated detection of FCDs based on these morphometric maps and probe its generalization performance in a large, independent data set. METHODS: In this retrospective study, we created a feed-forward ANN for FCD detection based on the morphometric output maps of MAP18. The ANN was trained and cross-validated on 113 patients (62 female, mean age ± SD =29.5 ± 13.6 years) with manually segmented FCDs and 362 healthy controls (161 female, mean age ± SD =30.2 ± 9.6 years) acquired on 13 different scanners. In addition, we validated the performance of the trained ANN on an independent, unseen data set of 60 FCD patients (28 female, mean age ± SD =30 ± 15.26 years) and 70 healthy controls (42 females, mean age ± SD = 40.0 ± 12.54 years). RESULTS: In the cross-validation, the ANN achieved a sensitivity of 87.4% at a specificity of 85.4% on the training data set. On the independent validation data set, our method still reached a sensitivity of 81.0% at a comparably high specificity of 84.3%. SIGNIFICANCE: Our method shows a robust automated detection of FCDs and performance generalizability, largely independent of scanning site or MR-sequence parameters. Taken together with the minimal input requirements of a standard T1 image, our approach constitutes a clinically viable and useful tool in the presurgical diagnostic routine for drug-resistant focal epilepsy.


Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Imaging, Three-Dimensional/standards , Magnetic Resonance Imaging/standards , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/physiopathology , Neural Networks, Computer , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Imaging, Three-Dimensional/methods , Infant , Magnetic Resonance Imaging/methods , Male , Middle Aged , Retrospective Studies , Young Adult
11.
Mol Ther ; 29(6): 2041-2052, 2021 06 02.
Article En | MEDLINE | ID: mdl-33609732

Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapies.


Antagomirs/genetics , Blood-Brain Barrier/metabolism , Epilepsy/genetics , Epilepsy/therapy , Animals , Antagomirs/administration & dosage , Blood-Brain Barrier/pathology , Disease Management , Disease Models, Animal , Disease Susceptibility , Gene Expression Regulation , Gene Silencing , Gene Transfer Techniques , Genetic Predisposition to Disease , Genetic Therapy , Mice , MicroRNAs/genetics , RNA Interference , Treatment Outcome
12.
Sci Rep ; 11(1): 1444, 2021 01 14.
Article En | MEDLINE | ID: mdl-33446810

Selective amygdalohippocampectomy is an effective treatment for patients with therapy-refractory temporal lobe epilepsy but may cause visual field defect (VFD). Here, we aimed to describe tissue-specific pre- and postoperative imaging correlates of the VFD severity using whole-brain analyses from voxel- to network-level. Twenty-eight patients with temporal lobe epilepsy underwent pre- and postoperative MRI (T1-MPRAGE and Diffusion Tensor Imaging) as well as kinetic perimetry according to Goldmann standard. We probed for whole-brain gray matter (GM) and white matter (WM) correlates of VFD using voxel-based morphometry and tract-based spatial statistics, respectively. We furthermore reconstructed individual structural connectomes and conducted local and global network analyses. Two clusters in the bihemispheric middle temporal gyri indicated a postsurgical GM volume decrease with increasing VFD severity (FWE-corrected p < 0.05). A single WM cluster showed a fractional anisotropy decrease with increasing severity of VFD in the ipsilesional optic radiation (FWE-corrected p < 0.05). Furthermore, patients with (vs. without) VFD showed a higher number of postoperative local connectivity changes. Neither in the GM, WM, nor in network metrics we found preoperative correlates of VFD severity. Still, in an explorative analysis, an artificial neural network meta-classifier could predict the occurrence of VFD based on presurgical connectomes above chance level.


Epilepsy, Temporal Lobe , Neurosurgical Procedures/adverse effects , Postoperative Complications , Temporal Lobe , Vision Disorders , Adult , Diffusion Tensor Imaging , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/surgery , Female , Humans , Male , Middle Aged , Postoperative Complications/diagnostic imaging , Postoperative Complications/physiopathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Vision Disorders/diagnostic imaging , Vision Disorders/etiology , Vision Disorders/physiopathology , Visual Field Tests
13.
Epilepsia ; 61(10): e140-e145, 2020 10.
Article En | MEDLINE | ID: mdl-32940355

Limbic encephalitis (LE) forms a spectrum of autoimmune diseases involving temporal lobe epilepsy and memory impairment. Imaging features of LE are known to depend on the associated antibody and to occur on the brain network level. However, first studies investigating brain networks in LE have either focused on one distinct antibody subgroup or on distinct anatomical regions. In this study, brain graphs of 17 LE patients with autoantibodies against glutamic acid decarboxylase 65 (GAD-LE), four LE patients with autoantibodies against leucine-rich glioma-inactivated 1, five LE patients with autoantibodies against contactin-associated protein-like 2, 26 age- and gender-matched healthy control subjects, and 20 epilepsy control patients with hippocampal sclerosis were constructed based on T1-weighted structural magnetic resonance imaging scans and diffusion tensor imaging. GAD-LE showed significantly altered global network topology in terms of integration and segregation as compared to healthy controls and patients with hippocampal sclerosis (P < .01, analysis of variance with Tukey-Kramer post hoc tests). Linear regression linked global network measures with amygdala volume and verbal memory performance (P < .05). Alterations of local network topology show serotype dependence in hippocampus, amygdala, insula, and various cortical regions. Our findings reveal serotype-dependent patterns of structural connectivity and prove the relevance of in silico network measures on clinical grounds.


Amygdala/diagnostic imaging , Autoantibodies , Epilepsy/diagnostic imaging , Limbic Encephalitis/diagnostic imaging , Memory Disorders/diagnostic imaging , Nerve Net/diagnostic imaging , Adult , Aged , Autoantibodies/blood , Biomarkers/blood , Cohort Studies , Epilepsy/blood , Female , Glutamate Decarboxylase/blood , Humans , Hypertrophy , Intracellular Signaling Peptides and Proteins/blood , Limbic Encephalitis/blood , Male , Memory Disorders/blood , Middle Aged
14.
Front Hum Neurosci ; 14: 262, 2020.
Article En | MEDLINE | ID: mdl-32733222

Cerebral lesions may cause degeneration and neuroplastic reorganization in both the ipsi- and the contralesional hemisphere, presumably creating an imbalance of primarily inhibitory interhemispheric influences produced via transcallosal pathways. The two hemispheres are thought to mutually hamper neuroplastic reorganization of the other hemisphere. The results of preceding degeneration and neuroplastic reorganization of white matter may be reflected by Diffusion Tensor Imaging-derived diffusivity parameters such as fractional anisotropy (FA). In this study, we applied Diffusion Tensor Imaging (DTI) to contrast the white matter status of the contralesional hemisphere of young lesioned brains with and without contralateral influences by comparing patients after hemispherotomy to those who had not undergone neurosurgery. DTI was applied to 43 healthy controls (26 females, mean age ± SD: 25.07 ± 11.33 years) and two groups of in total 51 epilepsy patients with comparable juvenile brain lesions (32 females, mean age ± SD: 25.69 ± 12.77 years) either after hemispherotomy (30 of 51 patients) or without neurosurgery (21 of 51 patients), respectively. FA values were compared between these groups using the unbiased tract-based spatial statistics approach. A voxel-wise ANCOVA controlling for age at scan yielded significant group differences in FA. A post hoc t-test between hemispherotomy patients and healthy controls revealed widespread supra-threshold voxels in the contralesional hemisphere of hemispherotomy patients indicating comparatively higher FA values (p < 0.05, FWE-corrected). The non-surgery group, in contrast, showed extensive supra-threshold voxels indicating lower FA values in the contralesional hemisphere as compared to healthy controls (p < 0.05, FWE-corrected). Whereas lower FA values are suggestive of pronounced contralesional degeneration in the non-surgery group, higher FA values in the hemispherotomy group may be interpreted as a result of preceding plastic remodeling. We conclude that, whether juvenile brain lesions are associated with contralesional degeneration or reorganization partly depends on the ipsilesional hemisphere. Contralesional reorganization as observed in hemispherotomy patients was most likely enabled by the complete neurosurgical deafferentation of the ipsilesional hemisphere and, thereby, the disinhibition of the neuroplastic potential of the contralesional hemisphere. The main argument of this study is that hemispherotomy may be seen as a major plastic stimulus and as a prerequisite for contralesional neuroplastic remodeling in patients with juvenile brain lesions.

15.
Neuroimage Clin ; 27: 102289, 2020.
Article En | MEDLINE | ID: mdl-32623136

Limbic encephalitis (LE) is an autoimmune syndrome often associated with temporal lobe epilepsy. Recent research suggests that particular structural changes in LE depend on the type of the associated antibody and occur in both mesiotemporal gray matter and white matter regions. However, it remains questionable to what degree conventional diffusion tensor imaging (DTI)-methods reflect alterations in white matter microstructure, since these methods do not account for crossing fibers. To address this methodological shortcoming, we applied fixel-based analysis as a novel technique modeling distinct fiber populations. For our study, 19 patients with LE associated with autoantibodies against glutamic acid decarboxylase 65 (GAD-LE, mean age = 35.9 years, 11 females), 4 patients with LE associated with autoantibodies against leucine-rich glioma-inactivated 1 (LGI1-LE, mean age = 63.3 years, 2 females), 5 patients with LE associated with contactin-associated protein-like 2 (CASPR2, mean age = 57.4, 0 females), 20 age- and gender-matched control patients with hippocampal sclerosis (19 GAD-LE control patients: mean age = 35.1 years, 11 females; 4 LGI1-LE control patients: mean age = 52.6 years, 2 females; 5 CASPR2-LE control patients: mean age = 42.7 years, 0 females; 10 patients are included in more than one group) and 33 age- and gender-matched healthy control subjects (19 GAD-LE healthy controls: mean age = 34.6 years, 11 females; 8 LGI1-LE healthy controls: mean age = 57.0 years, 4 females, 10 CASPR2-LE healthy controls: mean age = 57.2 years, 0 females; 4 subjects are included in more than one group) underwent structural imaging and DTI at 3 T and neuropsychological testing. Patient images were oriented according to lateralization in EEG resulting in an affected and unaffected hemisphere. Fixel-based metrics fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC = FD · FC) were calculated to retrieve information about white matter integrity both on the micro- and the macroscale. As compared to healthy controls, patients with GAD-LE showed significantly (family-wise error-corrected, p < 0.05) lower FDC in the superior longitudinal fascicle bilaterally and in the isthmus of the corpus callosum. In CASPR2-LE, lower FDC in the superior longitudinal fascicle was only present in the affected hemisphere. In LGI1-LE, we did not find any white matter alteration of the superior longitudinal fascicle. In an explorative tract-based correlation analysis within the GAD-LE group, only a correlation between the left/right ratio of FC values of the superior longitudinal fascicle and verbal memory performance (R = 0.64, Holm-Bonferroni corrected p < 0.048) remained significant after correcting for multiple comparisons. Our results underscore the concept of LE as a disease comprising a broad and heterogeneous group of entities and contribute novel aspects to the pathomechanistic understanding of this disease that may strengthen the role of MRI in the diagnosis of LE.


Gray Matter/pathology , Image Processing, Computer-Assisted , Limbic Encephalitis/pathology , White Matter/pathology , Adult , Aged , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Gray Matter/physiopathology , Humans , Image Processing, Computer-Assisted/methods , Limbic Encephalitis/physiopathology , Male , Middle Aged , Neuropsychological Tests , White Matter/physiopathology , Young Adult
16.
Article En | MEDLINE | ID: mdl-32390822

Alzheimer's disease is regarded as a synaptopathy with a long presymptomatic phase. Soluble, oligomeric amyloid-ß (Aß) is thought to play a causative role in this disease, which eventually leads to cognitive decline. However, most animal studies have employed mice expressing high levels of the Aß precursor protein (APP) transgene to drive pathology. Here, to understand how the principal neurons in different brain regions cope with moderate, chronically present levels of Aß, we employed transgenic mice expressing equal levels of mouse and human APP carrying a combination of three familial AD (FAD)-linked mutations (Swedish, Dutch, and London), that develop plaques only in old age. We analyzed dendritic spine parameters in hippocampal and cortical brain regions after targeted expression of EGFP to allow high-resolution imaging, followed by algorithm-based evaluation of mice of both sexes from adolescence to old age. We report that Aß species gradually accumulated throughout the life of APPSDL mice, but not the oligomeric forms, and that the amount of membrane-associated oligomers decreased at the onset of plaque formation. We observed an age-dependent loss of thin spines under most conditions as an indicator of a loss of synaptic plasticity in older mice. We further found that hippocampal pyramidal neurons respond to increased Aß levels by lowering spine density and shifting spine morphology, which reached significance in the CA1 subfield. In contrast, the spine density in cortical pyramidal neurons of APPSDL mice was unchanged. We also observed an increase in the protein levels of PSD-95 and Arc in the hippocampus and cortex, respectively. Our data demonstrated that increased concentrations of Aß have diverse effects on dendritic spines in the brain and suggest that hippocampal and cortical neurons have different adaptive and compensatory capacity during their lifetime. Our data also indicated that spine morphology differs between sexes in a region-specific manner.

17.
Sci Rep ; 10(1): 1010, 2020 01 23.
Article En | MEDLINE | ID: mdl-31974395

Motor function after hemispheric lesions has been associated with the structural integrity of either the pyramidal tract (PT) or alternate motor fibers (aMF). In this study, we aimed to differentially characterize the roles of PT and aMF in motor compensation by relating diffusion-tensor-imaging-derived parameters of white matter microstructure to measures of proximal and distal motor function in patients after hemispherotomy. Twenty-five patients (13 women; mean age: 21.1 years) after hemispherotomy (at mean age: 12.4 years) underwent Diffusion Tensor Imaging and evaluation of motor function using the Fugl-Meyer Assessment and the index finger tapping test. Regression analyses revealed that fractional anisotropy of the PT explained (p = 0.050) distal motor function including finger tapping rate (p = 0.027), whereas fractional anisotropy of aMF originating in the contralesional cortex and crossing to the ipsilesional hemisphere in the pons explained proximal motor function (p = 0.001). Age at surgery was found to be the only clinical variable to explain motor function (p < 0.001). Our results are indicative of complementary roles of the PT and of aMF in motor compensation of hemispherotomy mediating distal and proximal motor compensation of the upper limb, respectively.


Hemispherectomy , Motor Activity/physiology , Motor Cortex/physiology , Pyramidal Tracts/surgery , White Matter/surgery , Adolescent , Brain Injuries/pathology , Brain Injuries/surgery , Child , Diffusion Tensor Imaging , Female , Humans , Male , Pyramidal Tracts/pathology , White Matter/pathology , Young Adult
18.
Epilepsia ; 60(5): e40-e46, 2019 05.
Article En | MEDLINE | ID: mdl-30957874

Rasmussen encephalitis (RE) is an immune-mediated brain disease with progressive unihemispheric atrophy. Although it is regarded as a strictly one-sided pathology, volumetric magnetic resonance imaging (MRI) studies have revealed atrophy in the so-called unaffected hemisphere. In contrast to previous studies, we hypothesized that the contralesional hemisphere would show increased gray matter volume in response to the ipsilesional atrophy. We assessed the gray matter volume differences among 21 patients with chronic, late-stage RE and 89 age- and gender-matched healthy controls using voxel-based morphometry. In addition, 11 patients with more than one scan were tested longitudinally. Compared to controls, the contralesional hemisphere of the patients revealed a higher cortical volume but a lower subcortical gray matter volume (all P < 0.001, unpaired t test). Progressive gray matter volume losses in bilateral subcortical gray matter structures were observed (P < 0.05, paired t test). The comparatively higher cortical volume in the contralesional hemisphere can be interpreted as a result of compensatory structural remodeling in response to atrophy of the ipsilesional hemisphere. Contralesional subcortical gray matter volume loss may be due to the pathology or its treatment. Because MRI provides the best marker for determining the progression of RE, an accurate description of its MRI features is clinically relevant.


Brain/pathology , Encephalitis/pathology , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Adult , Anthropometry , Atrophy , Cross-Sectional Studies , Disease Progression , Dominance, Cerebral , Electroencephalography , Encephalitis/physiopathology , Female , Humans , Male , Organ Size , Retrospective Studies , Young Adult
19.
Brain ; 141(10): 2952-2965, 2018 10 01.
Article En | MEDLINE | ID: mdl-30239618

Epilepsy has been associated with a dysfunction of the blood-brain barrier. While there is ample evidence that a dysfunction of the blood-brain barrier contributes to epileptogenesis, blood-brain barrier dysfunction as a consequence of single epileptic seizures has not been systematically investigated. We hypothesized that blood-brain barrier dysfunction is temporally and anatomically associated with epileptic seizures in patients and used a newly-established quantitative MRI protocol to test our hypothesis. Twenty-three patients with epilepsy undergoing inpatient monitoring as part of their presurgical evaluation were included in this study (10 females, mean age ± standard deviation: 28.78 ± 8.45). For each patient, we acquired quantitative T1 relaxation time maps (qT1) after both ictal and interictal injection of gadolinium-based contrast agent. The postictal enhancement of contrast agent was quantified by subtracting postictal qT1 from interictal qT1 and the resulting ΔqT1 was used as a surrogate imaging marker of peri-ictal blood-brain barrier dysfunction. Additionally, the serum concentrations of MMP9 and S100, both considered biomarkers of blood-brain barrier dysfunction, were assessed in serum samples obtained prior to and after the index seizure. Fifteen patients exhibited secondarily generalized tonic-clonic seizures and eight patients exhibited focal seizures at ictal injection of contrast agent. By comparing ΔqT1 of the generalized tonic-clonic seizures and focal seizures groups, the anatomical association between ictal epileptic activity and postictal enhancement of contrast agent could be probed. The generalized tonic-clonic seizures group showed significantly higher ΔqT1 in the whole brain as compared to the focal seizures group. Specific analysis of scans acquired later than 3 h after the onset of the seizure revealed higher ΔqT1 in the generalized tonic-clonic seizures group as compared to the focal seizures group, which was strictly lateralized to the hemisphere of seizure onset. Both MMP9 and S100 showed a significantly increased postictal concentration. The current study provides evidence for the occurrence of a blood-brain barrier dysfunction, which is temporally and anatomically associated with epileptic seizures. qT1 after ictal contrast agent injection is rendered as valuable imaging marker of seizure-associated blood-brain barrier dysfunction and may be measured hours after the seizure. The observation of the strong anatomical association of peri-ictal blood-brain barrier dysfunction may spark the development of new functional imaging modalities for the post hoc visualization of brain areas affected by the seizure.


Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Epilepsy/diagnostic imaging , Epilepsy/pathology , Adult , Biomarkers/blood , Female , Humans , Magnetic Resonance Imaging , Male , Matrix Metalloproteinase 9/blood , Middle Aged , S100 Proteins/blood , Young Adult
20.
Curr Opin Neurol ; 31(2): 223-231, 2018 04.
Article En | MEDLINE | ID: mdl-29389747

PURPOSE OF REVIEW: MRI has a crucial position in the diagnostic routine of epilepsy patients. It relevantly contributes to etiological diagnostics and is indispensable in presurgical evaluation. As modern MRI research has been a boon to clinical neuroscience in general, it also holds the promise of enhancing diagnostics of epilepsy patients; i.e. increasing the diagnostic yield while decreasing the number of MRI-negative patients. Its rapid progress, however, has caused uncertainty about which of its latest developments already are of clinical interest and which still are of academic interest. It is the purpose of this review to clarify what, to the authors' mind, good practice of MRI in epilepsy patient care is today and what it might be tomorrow. RECENT FINDINGS: Progress of diagnostic MRI in epilepsy patients is driven by development of scanner hardware, scanner sequence and data postprocessing. Ultra high-field MRI and elaborate sequences provide datasets of novel quality which can be fed into postprocessing programs extracting pathognomonic features of structural or functional anatomy. The integration of these features by means of computerized classifiers yield previously unsurpassed diagnostic validity. Enthusiasm about Diffusion Tensor Imaging and functional MRI in the evaluation before epilepsy surgery is quelled. SUMMARY: The application of an epilepsy tailored MRI protocol at 3 Tesla followed by meticulous expert evaluation early after the onset of epilepsy is most crucial. It is hoped that future research will result in MRI workups more standardized than today and widely used postprocessing routines analyzing co-registered three-dimensional volumes from different modalities.


Brain/diagnostic imaging , Diffusion Tensor Imaging , Epilepsy/diagnostic imaging , Functional Neuroimaging , Magnetic Resonance Imaging , Epilepsy/surgery , Humans , Preoperative Care
...