Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 195(4): 1713-22, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26136430

RESUMEN

TGF-ß1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-ß1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-ß signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-ß1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-ß signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-ß1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death.


Asunto(s)
Epilepsia/metabolismo , Interleucina-6/metabolismo , Neuroglía/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/genética , Epilepsia/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos/genética , Fosforilación/efectos de los fármacos , Transporte de Proteínas , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/administración & dosificación , Factor de Crecimiento Transformador beta/farmacología
2.
Semin Cell Dev Biol ; 38: 35-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25444848

RESUMEN

The blood-brain barrier is part of the neurovascular unit and serves as a functional and anatomical barrier between the blood and the extracellular space. It controls the flow of solutes in and out of the brain thereby providing an optimal environment for neuronal functioning. Paracellular transport between endothelial cells is restricted by tight junctions and transendothelial transport is reduced and more selective compared to capillaries of other organs. Further, the blood-brain barrier is involved in controlling blood flow and it is the site for signaling damage of the nervous system to the peripheral immune system. As an important player in brain homeostasis, blood-brain barrier dysfunction has been implicated in the pathophysiology of many brain diseases including stroke, traumatic brain injury, brain tumors, epilepsy and neurodegenerative disorders. In this article - highlighting recent advances in basic science - we review the features of the blood-brain barrier and their significance for neuronal homeostasis to discuss clinical implications for neurological complications following cerebral ischemia.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encefalopatías/fisiopatología , Encéfalo/inmunología , Homeostasis , Animales , Encefalopatías/metabolismo , Humanos , Accidente Cerebrovascular/fisiopatología
3.
Proc Natl Acad Sci U S A ; 110(10): 4051-6, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341597

RESUMEN

It is widely believed that, in cortical pyramidal cells, action potentials (APs) initiate in the distal portion of axon initial segment (AIS) because that is where Na(+) channel density is highest. To investigate the relationship between the density of Na(+) channels and the spatiotemporal pattern of AP initiation, we simultaneously recorded Na(+) flux and action currents along the proximal axonal length. We found that functional Na(+) channel density is approximately four times lower in the AP trigger zone than in the middle of the AIS, where it is highest. Computational analysis of AP initiation revealed a paradoxical mismatch between the AP threshold and Na(+) channel density, which could be explained by the lopsided capacitive load imposed on the proximal end of the AIS by the somatodendritic compartment. Favorable conditions for AP initiation are therefore achieved in the distal AIS portion, close to the edge of myelin, where the current source-load ratio is highest. Our findings suggest that cable properties play a central role in determining where the AP starts, such that small plastic changes in the local AIS Na(+) channel density could have a large influence on neuronal excitability as a whole.


Asunto(s)
Axones/metabolismo , Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Axones/ultraestructura , Benzofuranos , Éteres Cíclicos , Colorantes Fluorescentes , Ratones , Modelos Neurológicos , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Canales de Sodio/metabolismo , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/ultraestructura
4.
J Neurosci ; 29(34): 10588-99, 2009 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-19710312

RESUMEN

Focal epilepsy often develops following traumatic, ischemic, or infectious brain injury. While the electrical activity of the epileptic brain is well characterized, the mechanisms underlying epileptogenesis are poorly understood. We have recently shown that in the rat neocortex, long-lasting breakdown of the blood-brain barrier (BBB) or direct exposure of the neocortex to serum-derived albumin leads to rapid upregulation of the astrocytic marker GFAP (glial fibrillary acidic protein), followed by delayed (within 4-7 d) development of an epileptic focus. We investigated the role of astrocytes in epileptogenesis in the BBB-breakdown and albumin models of epileptogenesis. We found similar, robust changes in astrocytic gene expression in the neocortex within hours following treatment with deoxycholic acid (BBB breakdown) or albumin. These changes predict reduced clearance capacity for both extracellular glutamate and potassium. Electrophysiological recordings in vitro confirmed the reduced clearance of activity-dependent accumulation of both potassium and glutamate 24 h following exposure to albumin. We used a NEURON model to simulate the consequences of reduced astrocytic uptake of potassium and glutamate on EPSPs. The model predicted that the accumulation of glutamate is associated with frequency-dependent (>100 Hz) decreased facilitation of EPSPs, while potassium accumulation leads to frequency-dependent (10-50 Hz) and NMDA-dependent synaptic facilitation. In vitro electrophysiological recordings during epileptogenesis confirmed frequency-dependent synaptic facilitation leading to seizure-like activity. Our data indicate a transcription-mediated astrocytic transformation early during epileptogenesis. We suggest that the resulting reduction in the clearance of extracellular potassium underlies frequency-dependent neuronal hyperexcitability and network synchronization.


Asunto(s)
Astrocitos , Epilepsia/patología , Epilepsia/fisiopatología , Regulación de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Potasio/metabolismo , Albúminas , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Simulación por Computador , Ácido Desoxicólico/toxicidad , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Modelos Neurológicos , Neocórtex/patología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
5.
J Neurosci ; 29(28): 8927-35, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605630

RESUMEN

Brain injury may result in the development of epilepsy, one of the most common neurological disorders. We previously demonstrated that albumin is critical in the generation of epilepsy after blood-brain barrier (BBB) compromise. Here, we identify TGF-beta pathway activation as the underlying mechanism. We demonstrate that direct activation of the TGF-beta pathway by TGF-beta1 results in epileptiform activity similar to that after exposure to albumin. Coimmunoprecipitation revealed binding of albumin to TGF-beta receptor II, and Smad2 phosphorylation confirmed downstream activation of this pathway. Transcriptome profiling demonstrated similar expression patterns after BBB breakdown, albumin, and TGF-beta1 exposure, including modulation of genes associated with the TGF-beta pathway, early astrocytic activation, inflammation, and reduced inhibitory transmission. Importantly, TGF-beta pathway blockers suppressed most albumin-induced transcriptional changes and prevented the generation of epileptiform activity. Our present data identifies the TGF-beta pathway as a novel putative epileptogenic signaling cascade and therapeutic target for the prevention of injury-induced epilepsy.


Asunto(s)
Encéfalo/metabolismo , Epilepsia/etiología , Perfilación de la Expresión Génica/métodos , Expresión Génica/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Potenciales de Acción/fisiología , Albúminas/metabolismo , Animales , Anticuerpos/farmacología , Astrocitos/metabolismo , Benzamidas/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/fisiopatología , Análisis por Conglomerados , Dioxoles/farmacología , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Epilepsia/complicaciones , Epilepsia/patología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Inmunoprecipitación/métodos , Técnicas In Vitro , Inflamación/etiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Análisis por Micromatrices/métodos , Ratas , Ratas Wistar , Proteína Smad2/metabolismo , Estadísticas no Paramétricas , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta2/antagonistas & inhibidores , Factor de Crecimiento Transformador beta2/inmunología , Factor de Crecimiento Transformador beta2/metabolismo , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
6.
FASEB J ; 20(10): 1733-5, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16807370

RESUMEN

Organophosphate pesticides (OPs), known inhibitors of acetylcholinesterase (AChE), are used extensively throughout the world. Recent studies have focused on the ACHE/PON1 locus as a determinant of inherited susceptibility to environmental OP exposure. To explore the relationship of the corresponding gene-environment interactions with brain activity, we integrated neurophysiologic, neuropsychological, biochemical, and genetic methods. Importantly, we found that subthreshold OP exposure leads to discernible physiological consequences that are significantly influenced by inherited factors. Cortical EEG analyses by LORETA revealed significantly decreased theta activity in the hippocampus, parahippocampal regions, and the cingulate cortex, as well as increased beta activity in the prefrontal cortex of exposed individuals-areas known to play a role in cholinergic-associated cognitive functions. Through neuropsychological testing, we identified an appreciable deficit in the visual recall in exposed individuals. Other neuropsychological tests revealed no significant differences between exposed and non-exposed individuals, attesting to the specificity of our findings. Biochemical analyses of blood samples revealed increases in paraoxonase and arylesterase activities and reduced serum acetylcholinesterase activity in chronically exposed individuals. Notably, specific paraoxonase genotypes were found to be associated with these exposure-related changes in blood enzyme activities and abnormal EEG patterns. Thus, gene-environment interactions involving the ACHE/PON1 locus may be causally involved in determining the physiological response to OP exposure.


Asunto(s)
Arildialquilfosfatasa/genética , Inhibidores de la Colinesterasa/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Neuronas/efectos de los fármacos , Plaguicidas/efectos adversos , Polimorfismo Genético , Acetilcolinesterasa/sangre , Arildialquilfosfatasa/sangre , Encéfalo/patología , Encéfalo/fisiopatología , Química Encefálica , Hidrolasas de Éster Carboxílico/sangre , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/genética , Electroencefalografía , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Recuerdo Mental , Neuronas/fisiología , Organofosfatos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA