Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(3): e2306210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997199

RESUMEN

Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.


Asunto(s)
Comunicación Celular , Células Endoteliales , Matriz Extracelular , Ingeniería de Tejidos , Materiales Biocompatibles
2.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961415

RESUMEN

The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.

3.
Acta Biomater ; 135: 260-273, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34469789

RESUMEN

Vascularization of large, diffusion-hindered biomaterial implants requires an understanding of how extracellular matrix (ECM) properties regulate angiogenesis. Sundry biomaterials assessed across many disparate angiogenesis assays have highlighted ECM determinants that influence this complex multicellular process. However, the abundance of material platforms, each with unique parameters to model endothelial cell (EC) sprouting presents additional challenges of interpretation and comparison between studies. In this work we directly compared the angiogenic potential of commonly utilized natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels in a multiplexed angiogenesis-on-a-chip platform. Modulating matrix density of collagen and fibrin hydrogels confirmed prior findings that increases in matrix density correspond to increased EC invasion as connected, multicellular sprouts, but with decreased invasion speeds. Angiogenesis in synthetic DexVS hydrogels, however, resulted in fewer multicellular sprouts. Characterizing hydrogel Young's modulus and permeability (a measure of matrix porosity), we identified matrix permeability to significantly correlate with EC invasion depth and sprout diameter. Although microporous collagen and fibrin hydrogels produced lumenized sprouts in vitro, they rapidly resorbed post-implantation into the murine epididymal fat pad. In contrast, DexVS hydrogels proved comparatively stable. To enhance angiogenesis within DexVS hydrogels, we incorporated sacrificial microgels to generate cell-scale pores throughout the hydrogel. Microporous DexVS hydrogels resulted in lumenized sprouts in vitro and enhanced cell invasion in vivo. Towards the design of vascularized biomaterials for long-term regenerative therapies, this work suggests that synthetic biomaterials offer improved size and shape control following implantation and that tuning matrix porosity may better support host angiogenesis. STATEMENT OF SIGNIFICANCE: Understanding how extracellular matrix properties govern angiogenesis will inform biomaterial design for engineering vascularized implantable grafts. Here, we utilized a multiplexed angiogenesis-on-a-chip platform to compare the angiogenic potential of natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels. Characterization of matrix properties and sprout morphometrics across these materials points to matrix porosity as a critical regulator of sprout invasion speed and diameter, supported by the observation that nanoporous DexVS hydrogels yielded endothelial cell sprouts that were not perfusable. To enhance angiogenesis into synthetic hydrogels, we incorporated sacrificial microgels to generate microporosity. We find that microporosity increased sprout diameter in vitro and cell invasion in vivo. This work establishes a composite materials approach to enhance the vascularization of synthetic hydrogels.


Asunto(s)
Materiales Biocompatibles , Neovascularización Fisiológica , Animales , Materiales Biocompatibles/farmacología , Células Endoteliales , Matriz Extracelular , Hidrogeles/farmacología , Ratones , Porosidad
4.
Adv Mater ; 33(40): e2102641, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34363246

RESUMEN

Mechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite-element-based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix-borne forces and deformations as well as force-mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.


Asunto(s)
Matriz Extracelular/química , Robótica , Animales , Adhesión Celular , Movimiento Celular , Análisis de Elementos Finitos , Ratones , Células 3T3 NIH , Oligopéptidos/química , Tecnología Inalámbrica
5.
Biomater Sci ; 9(1): 93-107, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33325920

RESUMEN

Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) show great potential for engineering myocardium to study cardiac disease and create regenerative therapies. However, iPSC-CMs typically possess a late embryonic stage phenotype, with cells failing to exhibit markers of mature adult tissue. This is due in part to insufficient knowledge and control of microenvironmental cues required to facilitate the organization and maturation of iPSC-CMs. Here, we employed a cell-adhesive, mechanically tunable synthetic fibrous extracellular matrix (ECM) consisting of electrospun dextran vinyl sulfone (DVS) fibers and examined how biochemical, architectural, and mechanical properties of the ECM impact iPSC-CM tissue assembly and subsequent function. Exploring a multidimensional parameter space spanning cell-adhesive ligand, seeding density, fiber alignment, and stiffness, we found that fibronectin-functionalized DVS matrices composed of highly aligned fibers with low stiffness optimally promoted the organization of functional iPSC-CM tissues. Tissues generated on these matrices demonstrated improved calcium handling and increased end-to-end localization of N-cadherin as compared to micropatterned fibronectin lines or fibronectin-coated glass. Furthermore, DVS matrices supported long-term culture (45 days) of iPSC-CMs; N-cadherin end-to-end localization and connexin43 expression both increased as a function of time in culture. In sum, these findings demonstrate the importance of recapitulating the fibrous myocardial ECM in engineering structurally organized and functional iPSC-CM tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adulto , Diferenciación Celular , Matriz Extracelular , Humanos , Miocardio , Miocitos Cardíacos
6.
Sci Adv ; 6(37)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917680

RESUMEN

Fibrosis, characterized by aberrant tissue scarring from activated myofibroblasts, is often untreatable. Although the extracellular matrix becomes increasingly stiff and fibrous during disease progression, how these physical cues affect myofibroblast differentiation in 3D is poorly understood. Here, we describe a multicomponent hydrogel that recapitulates the 3D fibrous structure of interstitial tissue regions where idiopathic pulmonary fibrosis (IPF) initiates. In contrast to findings on 2D hydrogels, myofibroblast differentiation in 3D was inversely correlated with hydrogel stiffness but positively correlated with matrix fibers. Using a multistep bioinformatics analysis of IPF patient transcriptomes and in vitro pharmacologic screening, we identify matrix metalloproteinase activity to be essential for 3D but not 2D myofibroblast differentiation. Given our observation that compliant degradable 3D matrices amply support fibrogenesis, these studies demonstrate a departure from the established relationship between stiffness and myofibroblast differentiation in 2D, and provide a new 3D model for studying fibrosis and identifying antifibrotic therapeutics.

7.
J Biomech Eng ; 142(11)2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32839824

RESUMEN

Mechanical interactions between cells and their surrounding extracellular matrix (ECM) guide many fundamental cell behaviors. Native connective tissue consists of highly organized, 3D networks of ECM fibers with complex, nonlinear mechanical properties. The most abundant stromal matrix component is fibrillar type I collagen, which often possesses a wavy, crimped morphology that confers strain- and load-dependent nonlinear mechanical behavior. Here, we established a new and simple method for engineering electrospun fibrous matrices composed of dextran vinyl sulfone (DexVS) with controllable crimped structure. A hydrophilic peptide was functionalized to DexVS matrices to trigger swelling of individual hydrogel fibers, resulting in crimped microstructure due to the fixed anchorage of fibers. Mechanical characterization of these matrices under tension confirmed orthogonal control over nonlinear stress-strain responses and matrix stiffness. We next examined ECM mechanosensing of individual endothelial cells (ECs) and found that fiber crimp promoted physical matrix remodeling alongside decreases in cell spreading, focal adhesion area, and nuclear localization of Yes-associated protein (YAP). These changes corresponded to an increase in migration speed, along with evidence for long-range interactions between neighboring cells in crimped matrices. Interestingly, when ECs were seeded at high density in crimped matrices, capillary-like networks rapidly assembled and contained tube-like cellular structures wrapped around bundles of synthetic matrix fibers due to increased physical reorganization of matrix fibers. Our work provides an additional level of mechanical and architectural tunability to synthetic fibrous matrices and implicates a critical role for mechanical nonlinearity in EC mechanosensing and network formation.


Asunto(s)
Células Endoteliales , Matriz Extracelular , Adhesiones Focales , Hidrogeles
8.
Soft Matter ; 16(28): 6501-6513, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32597450

RESUMEN

Acoustically-responsive scaffolds (ARSs), which are composite fibrin hydrogels, have been used to deliver regenerative molecules. ARSs respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Here, we study the ADV-induced, time-dependent micromechanical and microstructural changes to the fibrin matrix in ARSs using confocal fluorescence microscopy as well as atomic force microscopy. ARSs, containing phase-shift double emulsion (PSDE, mean diameter: 6.3 µm), were exposed to focused ultrasound to generate ADV - the phase transitioning of the PSDE into gas bubbles. As a result of ADV-induced mechanical strain, localized restructuring of fibrin occurred at the bubble-fibrin interface, leading to formation of locally denser regions. ADV-generated bubbles significantly reduced fibrin pore size and quantity within the ARS. Two types of ADV-generated bubble responses were observed in ARSs: super-shelled spherical bubbles, with a growth rate of 31 µm per day in diameter, as well as fluid-filled macropores, possibly as a result of acoustically-driven microjetting. Due to the strain stiffening behavior of fibrin, ADV induced a 4-fold increase in stiffness in regions of the ARS proximal to the ADV-generated bubble versus distal regions. These results highlight that the mechanical and structural microenvironment within an ARS can be spatiotemporally modulated using ultrasound, which could be used to control cellular processes and further the understanding of ADV-triggered drug delivery for regenerative applications.


Asunto(s)
Acústica , Fibrina , Emulsiones , Hidrogeles , Volatilización
9.
Acta Biomater ; 105: 78-86, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31945504

RESUMEN

Mechanical interactions between fibroblasts and their surrounding extracellular matrix (ECM) guide fundamental behaviors such as spreading, migration, and proliferation that underlie disease pathogenesis. The challenges of studying ECM mechanics in vivo have motivated the development of in vitro models of the fibrous ECM in which fibroblasts reside. Natural materials such as collagen hydrogels bear structural and biochemical resemblance to stromal ECM, but mechanistic studies in these settings are often confounded by cell-mediated material degradation and the lack of structural and mechanical tunability. Here, we established a new material system composed of electrospun dextran vinyl sulfone (DexVS) polymeric fibers. These fibrous matrices exhibit mechanical tunability at both the single fiber (80-340 MPa) and bulk matrix (0.77-11.03 kPa) level, as well as long-term stability in mechanical properties over a two-week period. Cell adhesion to these matrices can be either user-defined by functionalizing synthetic fibers with thiolated adhesive peptides or methacrylated heparin to sequester cell-derived ECM proteins. We utilized DexVS fibrous matrices to investigate the role of matrix mechanics on the activation of fibroblasts into myofibroblasts, a key step of the fibrotic progression. In contrast to previous findings with non-fibrous hydrogel substrates, we find that fibroblasts in soft and deformable matrices exhibit increased spreading, focal adhesion formation, proliferation, and myofibroblast activation as compared to cells on stiffer matrices with equivalent starting architecture. STATEMENT OF SIGNIFICANCE: Cellular mechanosensing of fibrillar extracellular matrices plays a critical role in homeostasis and disease progression in stromal connective tissue. Here, we established a new material system composed of electrospun dextran vinyl sulfone polymeric fibers. These matrices exhibit architectural, mechanical, and biochemical tunability to accurately model diverse tissue microenvironments found in the body. In contrast to previous observations with non-fibrous hydrogels, we find that fibroblasts in soft and deformable fibrous matrices exhibit increased spreading and focal adhesion formation as compared to those in stiffer matrices with equivalent architecture. We also investigated the role of matrix stiffness on myofibroblast activation, a critical step in the fibrotic cascade, and find that low stiffness matrices promote increased myofibroblast activation.


Asunto(s)
Dextranos/farmacología , Miofibroblastos/citología , Sulfonas/farmacología , Adhesión Celular/efectos de los fármacos , Módulo de Elasticidad/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Heparina/farmacología , Humanos , Metacrilatos/farmacología , Miofibroblastos/efectos de los fármacos , Factores de Tiempo
10.
Nat Commun ; 10(1): 1186, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862791

RESUMEN

Cells select from a diverse repertoire of migration strategies. Recent developments in tunable biomaterials have helped identify how extracellular matrix properties influence migration, however, many settings lack the fibrous architecture characteristic of native tissues. To investigate migration in fibrous contexts, we independently varied the alignment and stiffness of synthetic 3D fiber matrices and identified two phenotypically distinct migration modes. In contrast to stiff matrices where cells migrated continuously in a traditional mesenchymal fashion, cells in deformable matrices stretched matrix fibers to store elastic energy; subsequent adhesion failure triggered sudden matrix recoil and rapid cell translocation. Across a variety of cell types, traction force measurements revealed a relationship between cell contractility and the matrix stiffness where this migration mode occurred optimally. Given the prevalence of fibrous tissues, an understanding of how matrix structure and mechanics influences migration could improve strategies to recruit repair cells to wound sites or inhibit cancer metastasis.


Asunto(s)
Actomiosina/fisiología , Movimiento Celular/fisiología , Matriz Extracelular/fisiología , Resinas Acrílicas/química , Amidas/farmacología , Animales , Materiales Biocompatibles/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Dextranos/química , Módulo de Elasticidad/efectos de los fármacos , Fibroblastos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Microscopía Intravital/métodos , Toxinas Marinas , Ensayo de Materiales/métodos , Metacrilatos/química , Ratones , Microscopía Confocal , Células 3T3 NIH , Oxazoles/farmacología , Piridinas/farmacología , Imagen de Lapso de Tiempo
11.
Sci Rep ; 9(1): 12, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626885

RESUMEN

Vasculogenesis is the de novo formation of a vascular network from individual endothelial progenitor cells occurring during embryonic development, organogenesis, and adult neovascularization. Vasculogenesis can be mimicked and studied in vitro using network formation assays, in which endothelial cells (ECs) spontaneously form capillary-like structures when seeded in the appropriate microenvironment. While the biochemical regulators of network formation have been well studied using these assays, the role of mechanical and topographical properties of the extracellular matrix (ECM) is less understood. Here, we utilized both natural and synthetic fibrous materials to better understand how physical attributes of the ECM influence the assembly of EC networks. Our results reveal that active cell-mediated matrix recruitment through actomyosin force generation occurs concurrently with network formation on Matrigel, a reconstituted basement membrane matrix regularly used to promote EC networks, and on synthetic matrices composed of electrospun dextran methacrylate (DexMA) fibers. Furthermore, modulating physical attributes of DexMA matrices that impair matrix recruitment consequently inhibited the formation of cellular networks. These results suggest an iterative process in which dynamic cell-induced changes to the physical microenvironment reciprocally modulate cell behavior to guide the formation and stabilization of multicellular networks.


Asunto(s)
Endotelio Vascular/citología , Matriz Extracelular/fisiología , Células Endoteliales de la Vena Umbilical Humana/citología , Capilares/crecimiento & desarrollo , Diferenciación Celular , Células Cultivadas , Colágeno/química , Técnicas de Cultivo , Dextranos/química , Combinación de Medicamentos , Humanos , Laminina/química , Metacrilatos/química , Morfogénesis , Neovascularización Fisiológica , Proteoglicanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...