Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 212
1.
Article En | MEDLINE | ID: mdl-38708410

Aim: Increasing evidence suggests that the inclusion of self-identified race in clinical decision algorithms may perpetuate longstanding inequities. Until recently, most pulmonary function tests utilized separate reference equations that are race/ethnicity based. Purpose: We assess the magnitude and scope of the available literature on the negative impact of race-based pulmonary function prediction equations on relevant outcomes in African Americans with COPD. Methods: We performed a scoping review utilizing an English language search on PubMed/Medline, Embase, Scopus, and Web of Science in September 2022 and updated it in December 2023. We searched for publications regarding the effect of race-specific vs race-neutral, race-free, or race-reversed lung function testing algorithms on the diagnosis of COPD and COPD-related physiologic and functional measures. Joanna Briggs Institute (JBI) guidelines were utilized for this scoping review. Eligibility criteria: The search was restricted to adults with COPD. We excluded publications on other lung disorders, non-English language publications, or studies that did not include African Americans. The search identified publications. Ultimately, six peer-reviewed publications and four conference abstracts were selected for this review. Results: Removal of race from lung function prediction equations often had opposite effects in African Americans and Whites, specifically regarding the severity of lung function impairment. Symptoms and objective findings were better aligned when race-specific reference values were not used. Race-neutral prediction algorithms uniformly resulted in reclassifying severity in the African Americans studied. Conclusion: The limited literature does not support the use of race-based lung function prediction equations. However, this assertion does not provide guidance for every specific clinical situation. For African Americans with COPD, the use of race-based prediction equations appears to fall short in enhancing diagnostic accuracy, classifying severity of impairment, or predicting subsequent clinical events. We do not have information comparing race-neutral vs race-based algorithms on prediction of progression of COPD. We conclude that the elimination of race-based reference values potentially reduces underestimation of disease severity in African Americans with COPD.


Black or African American , Lung , Pulmonary Disease, Chronic Obstructive , Respiratory Function Tests , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/ethnology , Lung/physiopathology , Predictive Value of Tests , Race Factors , Algorithms , Health Status Disparities , Prognosis , Healthcare Disparities/ethnology
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673737

Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.


Heart Transplantation , Humans , Heart Transplantation/methods , Organ Preservation/methods , Tissue and Organ Procurement/methods , Animals , Perfusion/methods , Tissue Donors , Energy Metabolism
4.
BMC Geriatr ; 24(1): 190, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38408948

BACKGROUND: Populations are ageing globally and Low- and Middle-Income Countries (LMICs) are experiencing the fastest rates of demographic change. Few studies have explored the burden of frailty amongst older people in hospital in LMICs, where healthcare services are having to rapidly adapt to align with the needs of older people. This study aimed to measure the prevalence of frailty amongst older people admitted to hospital in Tanzania and to explore their demographic and clinical characteristics. METHODS: This study had a prospective observational design. Over a six-month period, all adults ≥ 60 years old admitted to medical wards in four hospitals in northern Tanzania were invited to participate. They were screened for frailty using the Clinical Frailty Scale (CFS) and the Frailty Phenotype (FP). Demographic and clinical characteristics of interest were recorded in a structured questionnaire. These included the Barthel Index, the Identification of Elderly Africans Instrumental Activities of Daily Living (IADEA-IADL) and Cognitive (IDEA-Cog) screens, the EURO-D depression scale and Confusion Assessment Method. RESULTS: 540 adults aged ≥ 60 were admitted, and 308 completed assessment. Frailty was present in 66.6% using the CFS and participants with frailty were significantly older, with lower levels of education and literacy, greater disability, greater comorbidity, poorer cognition and higher levels of delirium. Using the FP, 57.0% of participants were classed as frail though a majority of participants (n = 159, 51.6%) could not be classified due to a high proportion of missing data. CONCLUSIONS: This study indicates that the prevalence of frailty on medical wards in northern Tanzania is high according to the CFS. However, the challenges in operationalising the FP in this setting highlight the need for future work to adapt frailty screening tools for an African context. Future investigations should also seek to correlate frailty status with long-term clinical outcomes after admission in this setting.


Frailty , Aged , Humans , Frailty/diagnosis , Frailty/epidemiology , Frailty/psychology , Frail Elderly/psychology , Activities of Daily Living , Tanzania/epidemiology , Geriatric Assessment/methods , Hospitals
5.
J Med Chem ; 66(22): 15115-15140, 2023 11 23.
Article En | MEDLINE | ID: mdl-37943012

F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.


Myocardial Infarction , Myocardial Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Hydrolysis , Adenosine Triphosphate/metabolism , Mitochondria, Heart/metabolism
6.
Redox Biol ; 67: 102894, 2023 11.
Article En | MEDLINE | ID: mdl-37839355

The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.


Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Reactive Oxygen Species/metabolism , Myocardium/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Oxidation-Reduction
7.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119534, 2023 10.
Article En | MEDLINE | ID: mdl-37399908

Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca2+/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death. However, the role and relationship between these novel non-conventional signalling and the well-accepted canonical pathway in terms of tissue- and/or disease-specific prioritisation is completely unknown. In this review, we provide current knowledge on some necroptotic pathways being not directly associated with RIPK3-MLKL execution and report studies showing the role of respective microRNAs in the regulation of necroptotic injury in the heart and in some other tissues having a high expression of the pro-necroptotic proteins.


Necroptosis , Protein Kinases , Humans , Necroptosis/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Necrosis , Cell Death/genetics , Organelles/metabolism
8.
Basic Res Cardiol ; 118(1): 22, 2023 05 26.
Article En | MEDLINE | ID: mdl-37233787

Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.


Ischemic Preconditioning, Myocardial , Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Permeability Transition Pore/pharmacology , Myocardial Ischemia/prevention & control , Myocardial Ischemia/metabolism , Mitochondria/metabolism , Mitochondria, Heart/metabolism
9.
Nature ; 618(7963): 159-168, 2023 Jun.
Article En | MEDLINE | ID: mdl-37225977

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Nerve Regeneration , Humans , Neoplasms/drug therapy , Nerve Regeneration/drug effects , Protein Isoforms/agonists , Signal Transduction/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/drug effects , Cardiotonic Agents/pharmacology , Animals , Biocatalysis/drug effects , Protein Conformation/drug effects , Neurites/drug effects , Reperfusion Injury/prevention & control , Nerve Crush , Cell Proliferation/drug effects
10.
Int J Comput Assist Radiol Surg ; 18(12): 2339-2347, 2023 Dec.
Article En | MEDLINE | ID: mdl-37245180

PURPOSE: Bone-targeted radiofrequency ablation (RFA) is widely used in the treatment of vertebral metastases. While radiation therapy utilizes established treatment planning systems (TPS) based on multimodal imaging to optimize treatment volumes, current RFA of vertebral metastases has been limited to qualitative image-based assessment of tumour location to direct probe selection and access. This study aimed to design, develop and evaluate a computational patient-specific RFA TPS for vertebral metastases. METHODS: A TPS was developed on the open-source 3D slicer platform, including procedural setup, dose calculation (based on finite element modelling), and analysis/visualization modules. Usability testing was carried out by 7 clinicians involved in the treatment of vertebral metastases on retrospective clinical imaging data using a simplified dose calculation engine. In vivo evaluation was performed in a preclinical porcine model (n = 6 vertebrae). RESULTS: Dose analysis was successfully performed, with generation and display of thermal dose volumes, thermal damage, dose volume histograms and isodose contours. Usability testing showed an overall positive response to the TPS as beneficial to safe and effective RFA. The in vivo porcine study showed good agreement between the manually segmented thermally damaged volumes vs. the damage volumes identified from the TPS (Dice Similarity Coefficient = 0.71 ± 0.03, Hausdorff distance = 1.2 ± 0.1 mm). CONCLUSION: A TPS specifically dedicated to RFA in the bony spine could help account for tissue heterogeneities in both thermal and electrical properties. A TPS would enable visualization of damage volumes in 2D and 3D, assisting clinicians in decisions about potential safety and effectiveness prior to performing RFA in the metastatic spine.


Catheter Ablation , Radiofrequency Ablation , Humans , Swine , Animals , Retrospective Studies , Spine , Radiofrequency Ablation/methods , Catheter Ablation/methods
11.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article En | MEDLINE | ID: mdl-36889041

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
12.
Pharmacol Rev ; 75(1): 159-216, 2023 01.
Article En | MEDLINE | ID: mdl-36753049

Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.


Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Humans , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Ischemia/drug therapy , Myocardial Ischemia/prevention & control , Risk Factors , Heart Disease Risk Factors , Ischemia
13.
Cardiovasc Res ; 119(1): 45-63, 2023 03 17.
Article En | MEDLINE | ID: mdl-35325061

Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.


Cardiovascular System , Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Myocardial Infarction , Humans , Exosomes/metabolism , Extracellular Vesicles/metabolism , Cell-Derived Microparticles/metabolism , RNA/metabolism , Myocardial Infarction/metabolism
15.
Cardiovasc Res ; 119(2): 336-356, 2023 03 31.
Article En | MEDLINE | ID: mdl-35875883

Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID. In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations. Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation. Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.


COVID-19 , Heart Diseases , Humans , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Heart , Myocardium , COVID-19 Testing
16.
Eur Heart J ; 44(2): 100-112, 2023 01 07.
Article En | MEDLINE | ID: mdl-36337034

The use of biomarkers is undisputed in the diagnosis of primary myocardial infarction (MI), but their value for identifying MI is less well studied in the postoperative phase following coronary artery bypass grafting (CABG). To identify patients with periprocedural MI (PMI), several conflicting definitions of PMI have been proposed, relying either on cardiac troponin (cTn) or the MB isoenzyme of creatine kinase, with or without supporting evidence of ischaemia. However, CABG inherently induces the release of cardiac biomarkers, as reflected by significant cTn concentrations in patients with uncomplicated postoperative courses. Still, the underlying (patho)physiological release mechanisms of cTn are incompletely understood, complicating adequate interpretation of postoperative increases in cTn concentrations. Therefore, the aim of the current review is to present these potential underlying mechanisms of cTn release in general, and following CABG in particular (Graphical Abstract). Based on these mechanisms, dissimilarities in the release of cTnI and cTnT are discussed, with potentially important implications for clinical practice. Consequently, currently proposed cTn biomarker cut-offs by the prevailing definitions of PMI might warrant re-assessment, with differentiation in cut-offs for the separate available assays and surgical strategies. To resolve these issues, future prospective studies are warranted to determine the prognostic influence of biomarker release in general and PMI in particular.


Coronary Artery Bypass , Myocardial Infarction , Humans , Coronary Artery Bypass/adverse effects , Myocardial Infarction/etiology , Troponin I , Troponin T , Biomarkers
17.
Article En | MEDLINE | ID: mdl-36445625

PURPOSE: Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS: We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS: Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION: RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04699227.

20.
Cardiovasc Res ; 118(13): 2754-2767, 2022 10 21.
Article En | MEDLINE | ID: mdl-35899362

Here, we review the highlights of cardiovascular basic science published in 2021 and early 2022 on behalf of the European Society of Cardiology Council for Basic Cardiovascular Science. We begin with non-coding RNAs which have emerged as central regulators cardiovascular biology, and then discuss how technological developments in single-cell 'omics are providing new insights into cardiovascular development, inflammation, and disease. We also review recent discoveries on the biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize in Physiology or Medicine 2021 recognized the importance of the molecular basis of mechanosensing and here we review breakthroughs in cardiovascular sensing of mechanical force. We also summarize discoveries in the field of atherosclerosis including the role of clonal haematopoiesis of indeterminate potential, and new mechanisms of crosstalk between hyperglycaemia, lipid mediators, and inflammation. The past 12 months also witnessed major advances in the field of cardiac arrhythmia including new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell technology which has demonstrated disease causality for several genetic polymorphisms in long-QT syndrome and aortic valve disease, paving the way for personalized medicine approaches. Finally, the cardiovascular community has continued to better understand COVID-19 with significant advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of vaccine-induced thrombotic complications and new anti-viral therapies that protect the cardiovascular system.


COVID-19 , Cardiovascular Diseases , Cardiovascular System , Humans , Precision Medicine , Biomarkers , Inflammation , Lipids , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy
...