Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
bioRxiv ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38895409

Coronaviruses (CoV) rewire host protein homeostasis (proteostasis) networks through interactions between viral nonstructural proteins (nsps) and host factors to promote infection. With the emergence of SARS-CoV-2, it is imperative to characterize host interactors shared across nsp homologs. Using quantitative proteomics and functional genetic screening, we identify conserved proteostasis interactors of nsp2 and nsp4 that serve pro-viral roles during infection of murine hepatitis virus (MHV) - a model betacoronavirus. We uncover a glycoprotein quality control factor, Malectin (MLEC), which significantly reduces infectious titers when knocked down. During infection, nsp2 interacts with MLEC-associated proteins and the MLEC-interactome is drastically altered, stabilizing association with the Oligosaccheryltransferase (OST) complex, a crucial component of viral glycoprotein production. MLEC promotes viral protein levels and genome replication through its quality control activity. Lastly, we show MLEC promotes SARS-CoV-2 replication. Our results reveal a role for MLEC in mediating CoV infection and identify a potential target for pan-CoV antivirals.

2.
BMC Biol ; 22(1): 17, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38273288

BACKGROUND: Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex. RESULTS: We tested eight reference panels containing different combinations of neuronal- and glial cell types and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empirically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain deconvolution models produce accurate estimates of cellular proportions from profiles generated on postnatal human cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal cells in the human cortex and identify significant associations between increased Alzheimer's disease neuropathology and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of NeuNNeg/SOX10Pos nuclei. CONCLUSIONS: Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. These models are available as a resource to the community enabling the control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk cortex tissue.


DNA Methylation , Epigenesis, Genetic , Female , Pregnancy , Infant, Newborn , Humans , Neuroglia , Cerebral Cortex , Neurons/metabolism
3.
J Proteome Res ; 23(1): 356-367, 2024 01 05.
Article En | MEDLINE | ID: mdl-38038604

Coronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through the activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of overexpression of SARS-CoV-2 nsp4, a key driver of replication, on the UPR in cell culture using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins. We find that nsp4 preferentially activates the ATF6 and PERK branches of the UPR. Previously, we found that an N-terminal truncation of nsp3 (nsp3.1) can suppress pharmacological ATF6 activation. To determine how nsp3.1 and nsp4 tune the UPR, their coexpression demonstrated that nsp3.1 suppresses nsp4-mediated PERK, but not ATF6 activation. Reanalysis of SARS-CoV-2 infection proteomics data revealed time-dependent activation of PERK targets early in infection, which subsequently fades. This temporal regulation suggests a role for nsp3 and nsp4 in tuning the PERK pathway to attenuate host translation beneficial for viral replication while avoiding later apoptotic signaling caused by chronic activation. This work furthers our understanding of CoV-host proteostasis interactions and highlights the power of proteomic methods for systems-level analysis of the UPR.


COVID-19 , SARS-CoV-2 , Humans , Proteomics , Unfolded Protein Response , Cell Culture Techniques
4.
Proc Natl Acad Sci U S A ; 120(39): e2305092120, 2023 09 26.
Article En | MEDLINE | ID: mdl-37722046

Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3 (Bromodomain and WD repeat-containing protein 3), a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased H3K4me1 (H3 lysine 4 monomethylation) levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels but also causes a decrease in H3K4me3 (H3 lysine 4 trimethylation) levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific lysine demethylase 5 (KDM5/Lid), an enzyme that removes tri- and dimethyl marks from H3K4. Moreover, analysis of ChIP-seq (chromatin immunoprecipitation sequencing) data revealed that BRWD3 and KDM5 are significantly colocalized throughout the genome and H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.


Lysine , Protein Processing, Post-Translational , Chromatin , Histone Code , Methylation , Drosophila , Animals
5.
bioRxiv ; 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37162862

Coronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of SARS-CoV-2 nsp4, a key driver of replication, on the UPR using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins. We find nsp4 preferentially activates the ATF6 and PERK branches of the UPR. Previously, we found an N-terminal truncation of nsp3 (nsp3.1) can suppress pharmacological ATF6 activation. To determine how nsp3.1 and nsp4 tune the UPR, their co-expression demonstrated that nsp3.1 suppresses nsp4-mediated PERK, but not ATF6 activation. Re-analysis of SARS-CoV-2 infection proteomics data revealed time-dependent activation of PERK targets early in infection, which subsequently fades. This temporal regulation suggests a role for nsp3 and nsp4 in tuning the PERK pathway to attenuate host translation beneficial for viral replication while avoiding later apoptotic signaling caused by chronic activation. This work furthers our understanding of CoV-host proteostasis interactions and highlights the power of proteomic methods for systems-level analysis of the UPR.

6.
bioRxiv ; 2023 Mar 28.
Article En | MEDLINE | ID: mdl-37034668

Histone modifications are critical for regulating chromatin structure and gene expression. Dysregulation of histone modifications likely contributes to disease states and cancer. Depletion of the chromatin-binding protein BRWD3, a known substrate-specificity factor of the Cul4-DDB1 E3 ubiquitin ligase complex, results in increased in H3K4me1 levels. The underlying mechanism linking BRWD3 and H3K4 methylation, however, has yet to be defined. Here, we show that depleting BRWD3 not only causes an increase in H3K4me1 levels, but also causes a decrease in H3K4me3 levels, indicating that BRWD3 influences H3K4 methylation more broadly. Using immunoprecipitation coupled to quantitative mass spectrometry, we identified an interaction between BRWD3 and the H3K4-specific demethylase 5 (KDM5/Lid), an enzyme that removes tri- and di- methyl marks from H3K4. Moreover, analysis of ChIP-seq data revealed that BRWD3 and KDM5 are significantly co- localized throughout the genome and that sites of H3K4me3 are highly enriched at BRWD3 binding sites. We show that BRWD3 promotes K48-linked polyubiquitination and degradation of KDM5 and that KDM5 degradation is dependent on both BRWD3 and Cul4. Critically, depleting KDM5 fully restores altered H3K4me3 levels and partially restores H3K4me1 levels upon BRWD3 depletion. Together, our results demonstrate that BRWD3 regulates KDM5 activity to balance H3K4 methylation levels.

7.
PLoS Genet ; 19(3): e1010682, 2023 03.
Article En | MEDLINE | ID: mdl-36930688

Histones are essential for chromatin packaging, and histone supply must be tightly regulated as excess histones are toxic. To drive the rapid cell cycles of the early embryo, however, excess histones are maternally deposited. Therefore, soluble histones must be buffered by histone chaperones, but the chaperone necessary to stabilize soluble H3-H4 pools in the Drosophila embryo has yet to be identified. Here, we show that CG8223, the Drosophila homolog of NASP, is a H3-H4-specific chaperone in the early embryo. We demonstrate that, while a NASP null mutant is viable in Drosophila, NASP is a maternal effect gene. Embryos laid by NASP mutant mothers have a reduced rate of hatching and show defects in early embryogenesis. Critically, soluble H3-H4 pools are degraded in embryos laid by NASP mutant mothers. Our work identifies NASP as the critical H3-H4 histone chaperone in the Drosophila embryo.


Histone Chaperones , Histones , Animals , Histones/genetics , Histones/metabolism , Histone Chaperones/genetics , Drosophila/genetics , Drosophila/metabolism , Chromatin , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
8.
Nat Commun ; 13(1): 5620, 2022 09 24.
Article En | MEDLINE | ID: mdl-36153390

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the progressive accumulation of amyloid-beta and neurofibrillary tangles of tau in the neocortex. We profiled DNA methylation in two regions of the cortex from 631 donors, performing an epigenome-wide association study of multiple measures of AD neuropathology. We meta-analyzed our results with those from previous studies of DNA methylation in AD cortex (total n = 2013 donors), identifying 334 cortical differentially methylated positions (DMPs) associated with AD pathology including methylomic variation at loci not previously implicated in dementia. We subsequently profiled DNA methylation in NeuN+ (neuronal-enriched), SOX10+ (oligodendrocyte-enriched) and NeuN-/SOX10- (microglia- and astrocyte-enriched) nuclei, finding that the majority of DMPs identified in 'bulk' cortex tissue reflect DNA methylation differences occurring in non-neuronal cells. Our study highlights the power of utilizing multiple measures of neuropathology to identify epigenetic signatures of AD and the importance of characterizing disease-associated variation in purified cell-types.


Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Neurodegenerative Diseases/genetics , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism
9.
Cell Rep ; 37(7): 110022, 2021 11 16.
Article En | MEDLINE | ID: mdl-34788620

Alternative splicing is a post-transcriptional regulatory mechanism producing distinct mRNA molecules from a single pre-mRNA with a prominent role in the development and function of the central nervous system. We used long-read isoform sequencing to generate full-length transcript sequences in the human and mouse cortex. We identify novel transcripts not present in existing genome annotations, including transcripts mapping to putative novel (unannotated) genes and fusion transcripts incorporating exons from multiple genes. Global patterns of transcript diversity are similar between human and mouse cortex, although certain genes are characterized by striking differences between species. We also identify developmental changes in alternative splicing, with differential transcript usage between human fetal and adult cortex. Our data confirm the importance of alternative splicing in the cortex, dramatically increasing transcriptional diversity and representing an important mechanism underpinning gene regulation in the brain. We provide transcript-level data for human and mouse cortex as a resource to the scientific community.


Cerebral Cortex/metabolism , Protein Isoforms/genetics , Transcriptome/genetics , Alternative Splicing/genetics , Animals , Brain/metabolism , Cerebral Cortex/physiology , Exons/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Genome , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Protein Isoforms/metabolism , RNA Precursors/genetics , RNA Splice Sites/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA/methods
10.
Mol Brain ; 14(1): 98, 2021 06 26.
Article En | MEDLINE | ID: mdl-34174924

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Biological Clocks/genetics , Brain/embryology , Cellular Senescence , Epigenesis, Genetic , Fetus/cytology , Induced Pluripotent Stem Cells/cytology , Models, Biological , Neurons/cytology , Cellular Senescence/genetics , DNA Methylation/genetics , Databases, Genetic , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Pregnancy , Reproducibility of Results
11.
Mol Cell Proteomics ; 20: 100120, 2021.
Article En | MEDLINE | ID: mdl-34186245

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold-like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, nonstructural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) data set for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance, nuclear protein import for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.


Activating Transcription Factor 6/metabolism , Coronavirus Papain-Like Proteases/metabolism , Host-Pathogen Interactions/physiology , SARS-CoV-2/pathogenicity , Coronavirus 229E, Human/metabolism , Coronavirus 229E, Human/pathogenicity , Coronavirus OC43, Human/metabolism , Coronavirus OC43, Human/pathogenicity , Coronavirus Papain-Like Proteases/genetics , Endoplasmic Reticulum-Associated Degradation , HEK293 Cells , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Protein Interaction Maps , SARS-CoV-2/metabolism , Unfolded Protein Response , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
12.
bioRxiv ; 2021 Mar 08.
Article En | MEDLINE | ID: mdl-33758849

Human coronaviruses have become an increasing threat to global health; three highly pathogenic strains have emerged since the early 2000s, including most recently SARS-CoV-2, the cause of COVID-19. A better understanding of the molecular mechanisms of coronavirus pathogenesis is needed, including how these highly virulent strains differ from those that cause milder, common-cold like disease. While significant progress has been made in understanding how SARS-CoV-2 proteins interact with the host cell, non-structural protein 3 (nsp3) has largely been omitted from the analyses. Nsp3 is a viral protease with important roles in viral protein biogenesis, replication complex formation, and modulation of host ubiquitinylation and ISGylation. Herein, we use affinity purification-mass spectrometry to study the host-viral protein-protein interactome of nsp3 from five coronavirus strains: pathogenic strains SARS-CoV-2, SARS-CoV, and MERS-CoV; and endemic common-cold strains hCoV-229E and hCoV-OC43. We divide each nsp3 into three fragments and use tandem mass tag technology to directly compare the interactors across the five strains for each fragment. We find that few interactors are common across all variants for a particular fragment, but we identify shared patterns between select variants, such as ribosomal proteins enriched in the N-terminal fragment (nsp3.1) dataset for SARS-CoV-2 and SARS-CoV. We also identify unique biological processes enriched for individual homologs, for instance nuclear protein important for the middle fragment of hCoV-229E, as well as ribosome biogenesis of the MERS nsp3.2 homolog. Lastly, we further investigate the interaction of the SARS-CoV-2 nsp3 N-terminal fragment with ATF6, a regulator of the unfolded protein response. We show that SARS-CoV-2 nsp3.1 directly binds to ATF6 and can suppress the ATF6 stress response. Characterizing the host interactions of nsp3 widens our understanding of how coronaviruses co-opt cellular pathways and presents new avenues for host-targeted antiviral therapeutics.

13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article En | MEDLINE | ID: mdl-33441483

Flaviviruses, including dengue and Zika, are widespread human pathogens; however, no broadly active therapeutics exist to fight infection. Recently, remodeling of endoplasmic reticulum (ER) proteostasis by pharmacologic regulators, such as compound 147, was shown to correct pathologic ER imbalances associated with protein misfolding diseases. Here, we establish an additional activity of compound 147 as an effective host-centered antiviral agent against flaviviruses. Compound 147 reduces infection by attenuating the infectivity of secreted virions without causing toxicity in host cells. Compound 147 is a preferential activator of the ATF6 pathway of the ER unfolded protein response, which requires targeting of cysteine residues primarily on protein disulfide isomerases (PDIs). We find that the antiviral activity of 147 is independent of ATF6 induction but does require modification of reactive thiols on protein targets. Targeting PDIs and additional non-PDI targets using RNAi and other small-molecule inhibitors was unable to recapitulate the antiviral effects, suggesting a unique polypharmacology may mediate the activity. Importantly, 147 can impair infection of multiple strains of dengue and Zika virus, indicating that it is suitable as a broad-spectrum antiviral agent.


Antiviral Agents/pharmacology , Dengue/drug therapy , Small Molecule Libraries/pharmacology , Zika Virus Infection/drug therapy , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/pathogenicity , Endoplasmic Reticulum/drug effects , Humans , Proteostasis/drug effects , Unfolded Protein Response/drug effects , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus/pathogenicity , Zika Virus Infection/virology
14.
Brain ; 143(12): 3763-3775, 2020 12 01.
Article En | MEDLINE | ID: mdl-33300551

Human DNA methylation data have been used to develop biomarkers of ageing, referred to as 'epigenetic clocks', which have been widely used to identify differences between chronological age and biological age in health and disease including neurodegeneration, dementia and other brain phenotypes. Existing DNA methylation clocks have been shown to be highly accurate in blood but are less precise when used in older samples or in tissue types not included in training the model, including brain. We aimed to develop a novel epigenetic clock that performs optimally in human cortex tissue and has the potential to identify phenotypes associated with biological ageing in the brain. We generated an extensive dataset of human cortex DNA methylation data spanning the life course (n = 1397, ages = 1 to 108 years). This dataset was split into 'training' and 'testing' samples (training: n = 1047; testing: n = 350). DNA methylation age estimators were derived using a transformed version of chronological age on DNA methylation at specific sites using elastic net regression, a supervised machine learning method. The cortical clock was subsequently validated in a novel independent human cortex dataset (n = 1221, ages = 41 to 104 years) and tested for specificity in a large whole blood dataset (n = 1175, ages = 28 to 98 years). We identified a set of 347 DNA methylation sites that, in combination, optimally predict age in the human cortex. The sum of DNA methylation levels at these sites weighted by their regression coefficients provide the cortical DNA methylation clock age estimate. The novel clock dramatically outperformed previously reported clocks in additional cortical datasets. Our findings suggest that previous associations between predicted DNA methylation age and neurodegenerative phenotypes might represent false positives resulting from clocks not robustly calibrated to the tissue being tested and for phenotypes that become manifest in older ages. The age distribution and tissue type of samples included in training datasets need to be considered when building and applying epigenetic clock algorithms to human epidemiological or disease cohorts.


Aging/genetics , Biological Clocks/physiology , Cerebral Cortex/growth & development , Epigenesis, Genetic/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Cell Count , Cerebral Cortex/cytology , Child , Child, Preschool , DNA/genetics , DNA Methylation , Databases, Factual , Female , Humans , Infant , Machine Learning , Male , Middle Aged , Neurons/physiology , Phenotype , Reproducibility of Results , Sex Characteristics , Young Adult
15.
ACS Infect Dis ; 6(12): 3174-3189, 2020 12 11.
Article En | MEDLINE | ID: mdl-33263384

Human coronaviruses (hCoVs) have become a threat to global health and society, as evident from the SARS outbreak in 2002 caused by SARS-CoV-1 and the most recent COVID-19 pandemic caused by SARS-CoV-2. Despite a high sequence similarity between SARS-CoV-1 and -2, each strain has a distinctive virulence. A better understanding of the basic molecular mechanisms mediating changes in virulence is needed. Here, we profile the virus-host protein-protein interactions of two hCoV nonstructural proteins (nsps) that are critical for virus replication. We use tandem mass tag-multiplexed quantitative proteomics to sensitively compare and contrast the interactomes of nsp2 and nsp4 from three betacoronavirus strains: SARS-CoV-1, SARS-CoV-2, and hCoV-OC43-an endemic strain associated with the common cold. This approach enables the identification of both unique and shared host cell protein binding partners and the ability to further compare the enrichment of common interactions across homologues from related strains. We identify common nsp2 interactors involved in endoplasmic reticulum (ER) Ca2+ signaling and mitochondria biogenesis. We also identify nsp4 interactors unique to each strain, such as E3 ubiquitin ligase complexes for SARS-CoV-1 and ER homeostasis factors for SARS-CoV-2. Common nsp4 interactors include N-linked glycosylation machinery, unfolded protein response associated proteins, and antiviral innate immune signaling factors. Both nsp2 and nsp4 interactors are strongly enriched in proteins localized at mitochondria-associated ER membranes suggesting a new functional role for modulating host processes, such as calcium homeostasis, at these organelle contact sites. Our results shed light on the role these hCoV proteins play in the infection cycle, as well as host factors that may mediate the divergent pathogenesis of OC43 from SARS strains. Our mass spectrometry workflow enables rapid and robust comparisons of multiple bait proteins, which can be applied to additional viral proteins. Furthermore, the identified common interactions may present new targets for exploration by host-directed antiviral therapeutics.


COVID-19/metabolism , Host-Pathogen Interactions/genetics , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/metabolism , COVID-19/virology , Coronavirus OC43, Human/pathogenicity , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mitochondria/metabolism , Protein Binding , Protein Interaction Maps/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/virology , Transfection , Viral Nonstructural Proteins/genetics , Virulence/genetics , Virus Replication/genetics
16.
bioRxiv ; 2020 Jul 14.
Article En | MEDLINE | ID: mdl-32699849

Human coronaviruses (hCoV) have become a threat to global health and society, as evident from the SARS outbreak in 2002 caused by SARS-CoV-1 and the most recent COVID-19 pandemic caused by SARS-CoV-2. Despite high sequence similarity between SARS-CoV-1 and -2, each strain has distinctive virulence. A better understanding of the basic molecular mechanisms mediating changes in virulence is needed. Here, we profile the virus-host protein-protein interactions of two hCoV non-structural proteins (nsps) that are critical for virus replication. We use tandem mass tag-multiplexed quantitative proteomics to sensitively compare and contrast the interactomes of nsp2 and nsp4 from three betacoronavirus strains: SARS-CoV-1, SARS-CoV-2, and hCoV-OC43 - an endemic strain associated with the common cold. This approach enables the identification of both unique and shared host cell protein binding partners and the ability to further compare the enrichment of common interactions across homologs from related strains. We identify common nsp2 interactors involved in endoplasmic reticulum (ER) Ca 2+ signaling and mitochondria biogenesis. We also identifiy nsp4 interactors unique to each strain, such as E3 ubiquitin ligase complexes for SARS-CoV-1 and ER homeostasis factors for SARS-CoV-2. Common nsp4 interactors include N -linked glycosylation machinery, unfolded protein response (UPR) associated proteins, and anti-viral innate immune signaling factors. Both nsp2 and nsp4 interactors are strongly enriched in proteins localized at mitochondrial-associated ER membranes suggesting a new functional role for modulating host processes, such as calcium homeostasis, at these organelle contact sites. Our results shed light on the role these hCoV proteins play in the infection cycle, as well as host factors that may mediate the divergent pathogenesis of OC43 from SARS strains. Our mass spectrometry workflow enables rapid and robust comparisons of multiple bait proteins, which can be applied to additional viral proteins. Furthermore, the identified common interactions may present new targets for exploration by host-directed anti-viral therapeutics.

17.
Acta Orthop Belg ; 75(3): 405-7, 2009 Jun.
Article En | MEDLINE | ID: mdl-19681329

Dorsally angulated proximal phalanx fractures have always presented a difficulty for treatment. A variety of options for treatment have been tried in the past, many of these are operative options and therefore carry the risks of a surgical procedure. We present a case of a conservatively managed proximal phalanx fracture using a reversed dynamic or static finger extension splint, such as Roylan Sof-Stretch. The finger was immobilised using this splint and achieved bony union and very good function at both the metacarpophalangeal and proximal interphalangeal joints.


Finger Injuries/therapy , Fractures, Bone/therapy , Splints , Adult , Finger Injuries/diagnostic imaging , Finger Injuries/physiopathology , Finger Joint/physiopathology , Fractures, Bone/diagnostic imaging , Fractures, Bone/physiopathology , Fractures, Bone/surgery , Humans , Male , Metacarpophalangeal Joint/physiopathology , Radiography , Range of Motion, Articular , Recovery of Function
18.
Arthroscopy ; 24(7): 839-42, 2008 Jul.
Article En | MEDLINE | ID: mdl-18589274

Hip arthroscopy is becoming increasingly popular. A simple, precise, and practical means of recording arthroscopic findings will be useful for diagnostic, research, and audit purposes. Basic principles of cartography exist to produce two-dimensional paper representations of our spherical planet. We used the same principles to produce a two-dimensional map of the acetabulum and femoral head. The resulting hip diagram shows the acetabulum as viewed from the side and the femoral head as viewed from above. The ligamentum teres is attached to the medial margin of the head. The head-neck junction and part of the femoral neck is shown at the opposite margin of the ligamentum teres. The hip documentation form is simple, precise, and accurate. We use it to record our findings at hip arthroscopy, which we have used to assist us in our practice.


Acetabulum/anatomy & histology , Anthropometry/methods , Arthroscopy/methods , Documentation/methods , Femur Head/anatomy & histology , Hip Joint/anatomy & histology , Information Management/methods , Hip Joint/surgery , Humans , Osteoarthritis, Hip/diagnosis , User-Computer Interface , Video Recording
...