Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834315

RESUMEN

The aggregation of cancer cells provides a survival signal for disseminating cancer cells; however, the underlying molecular mechanisms have yet to be elucidated. Using qPCR gene arrays, this study investigated the changes in cancer-specific genes as well as genes regulating mitochondrial quality control, metabolism, and oxidative stress in response to aggregation and hypoxia in our progressive ovarian cancer models representing slow- and fast-developing ovarian cancer. Aggregation increased the expression of anti-apoptotic, stemness, epithelial-mesenchymal transition (EMT), angiogenic, mitophagic, and reactive oxygen species (ROS) scavenging genes and functions, and decreased proliferation, apoptosis, metabolism, and mitochondrial content genes and functions. The incorporation of stromal vascular cells (SVF) from obese mice into the spheroids increased DNA repair and telomere regulatory genes that may represent a link between obesity and ovarian cancer risk. While glucose had no effect, glutamine was essential for aggregation and supported proliferation of the spheroid. In contrast, low glucose and hypoxic culture conditions delayed adhesion and outgrowth capacity of the spheroids independent of their phenotype, decreased mitochondrial mass and polarity, and induced a shift of mitochondrial dynamics towards mitophagy. However, these conditions did not reduce the appearance of polarized mitochondria at adhesion sites, suggesting that adhesion signals that either reversed mitochondrial fragmentation or induced mitobiogenesis can override the impact of low glucose and oxygen levels. Thus, the plasticity of the spheroids' phenotype supports viability during dissemination, allows for the adaptation to changing conditions such as oxygen and nutrient availability. This may be critical for the development of an aggressive cancer phenotype and, therefore, could represent druggable targets for clinical interventions.


Asunto(s)
Neoplasias Ováricas , Humanos , Animales , Femenino , Ratones , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Oxígeno/farmacología , Hipoxia , Glucosa/metabolismo
2.
Am J Physiol Cell Physiol ; 318(3): C476-C485, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31875698

RESUMEN

Cell migration is centrally involved in a myriad of physiological processes, including morphogenesis, wound healing, tissue repair, and metastatic growth. The bioenergetics that underlie migratory behavior are not fully understood, in part because of variations in cell culture media and utilization of experimental cell culture systems that do not model physiological connective extracellular fibrous networks. In this study, we evaluated the bioenergetics of C2C12 myoblast migration and force production on fibronectin-coated nanofiber scaffolds of controlled diameter and alignment, fabricated using a nonelectrospinning spinneret-based tunable engineered parameters (STEP) platform. The contribution of various metabolic pathways to cellular migration was determined using inhibitors of cellular respiration, ATP synthesis, glycolysis, or glucose uptake. Despite immediate effects on oxygen consumption, mitochondrial inhibition only modestly reduced cell migration velocity, whereas inhibitors of glycolysis and cellular glucose uptake led to striking decreases in migration. The migratory metabolic sensitivity was modifiable based on the substrates present in cell culture media. Cells cultured in galactose (instead of glucose) showed substantial migratory sensitivity to mitochondrial inhibition. We used nanonet force microscopy to determine the bioenergetic factors responsible for single-cell force production and observed that neither mitochondrial nor glycolytic inhibition altered single-cell force production. These data suggest that myoblast migration is heavily reliant on glycolysis in cells grown in conventional media. These studies have wide-ranging implications for the causes, consequences, and putative therapeutic treatments aimed at cellular migration.


Asunto(s)
Movimiento Celular/fisiología , Metabolismo Energético/fisiología , Nanofibras , Animales , Antracenos/farmacología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Galactosa/farmacología , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Ratones
3.
J Mol Cell Cardiol ; 135: 160-171, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31445917

RESUMEN

Novel therapeutic strategies to treat mitochondrial deficiencies in acute coronary syndromes are needed. Complex I of the mitochondrial electron transport system is damaged following ischemia/reperfusion (I/R) injury. This disruption contributes to aberrant electron transport, diminished bioenergetics, an altered redox environment, and mitochondrial damage involved in tissue injury. In this study, we determined the cardiac and mitochondrial effects of idebenone, a benzoquinone currently in several clinical trials with purported 'antioxidant' effects. We employed complimentary models of ischemia/reperfusion injury in perfused hearts, permeabilized cardiac fibers, isolated mitochondria, and in cells to elucidate idebenone's cardioprotective mechanism(s). In ex vivo whole hearts, infarct size was markedly reduced with post-ischemic idebenone treatment (25 ±â€¯5% area at risk, AAR) compared to controls (56 ±â€¯6% AAR, P < .05). Several parameters of hemodynamic function were also significantly improved after idebenone treatment. Parallel studies of anoxia/reoxygenation were conducted using isolated mitochondria and permeabilized ventricular fibers. In isolated mitochondria, we simultaneously monitored respiration and ROS emission. Idebenone treatment modestly elevated succinate-derived H2O2 production when compared to vehicle control (1.34 ±â€¯0.05 vs 1.21 ±â€¯0.05%, H2O2/O2 respectively, P < .05). Isolated mitochondria subjected to anoxia/reoxygenation demonstrated higher rates of respiration with idebenone treatment (2360 ±â€¯69 pmol/s*mg) versus vehicle control (1995 ±â€¯101 pmol/s*mg). Both mitochondria and permeabilized cardiac fibers produced high rates of H2O2 after anoxia/reoxygenation, with idebenone showing no discernable attenuation on H2O2 production. These insights were further investigated with studies in mitochondria isolated from reperfused ventricle. The profound decrease in complex-I dependent respiration after ischemia/reperfusion (701 ±â€¯59 pmolO2/s*mg compared to 1816 ±â€¯105 pmol O2/s*mg in normoxic mitochondria) was attenuated with idebenone treatment (994 ±â€¯76 vs pmol O2/s*mg, P < .05). Finally, the effects of idebenone were determined using permeabilized cell models with chemical inhibition of complex I. ADP-dependent oxidative phosphorylation capacity was significantly higher in complex-I inhibited cells treated acutely with idebenone (89.0 ±â€¯4.2 pmol/s*million cells versus 70.1 ±â€¯8.2 pmol/s*million cells in untreated cells). Taken together, these data indicate that the cardioprotective effects of idebenone treatment do not involve ROS-scavenging but appear to involve augmentation of the quinone pool, thus providing reducing equivalents downstream of complex I. As this compound is already in clinical trials for other indications, it may provide a safe and useful approach to mitigate ischemia/reperfusion injury in patients.


Asunto(s)
Complejo I de Transporte de Electrón/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Ubiquinona/análogos & derivados , Animales , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA