Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 360
1.
Adv Sci (Weinh) ; : e2401340, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647396

Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.

2.
Biochem Pharmacol ; : 116186, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38561092

Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.

3.
Nanomedicine (Lond) ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593053

Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.


Nanomedicines are based around the delivery of therapies by tiny, nanosized delivery vehicles. This method offers a much better way of specifically targeting life-threatening diseases. For fast delivery, nanomedicines can be injected into the blood (intravenously); however, this often leads to an unwanted and exaggerated immune response. The immune system is activated by proteins in the blood that attach themselves to nanoparticles through various chemical interactions (the protein corona effect). Fluorine is a chemical routinely used in surfactants such as firefighting foam and more recently in molecular imaging and nanoparticles designed for the delivery of therapies aimed at cancer. While fluorine has great potential to improve the cellular uptake of therapies, little is known about whether it can also help camouflage the nanoparticles against the immune system responses. Here, using fluorinated polymer-coated gold nanoparticles, the authors demonstrate that fluorine reduces uptake by immune cells and is highly effective at reducing the binding of immune system-initiating proteins. This work successfully illustrates the rationale for more widespread investigation of fluorine during the development of polymer-coated nanoparticles designed for the intravenous delivery of nanomedicines.

4.
Microbiol Resour Announc ; 13(3): e0129423, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38376224

Actinobacteriophage Djungelskog was isolated from a sample of degraded organic material in Poughkeepsie, NY, using Arthrobacter globiformis B-2979. Its genome is 54,512 bp and encodes 86 putative protein-coding genes. Djungelskog has a siphovirus morphology and is assigned to cluster AW based on gene content similarity to actinobacteriophages.

5.
Nat Commun ; 15(1): 613, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38242873

Alzheimer's disease (AD) is a major cause of dementia debilitating the global ageing population. Current understanding of the AD pathophysiology implicates the aggregation of amyloid beta (Aß) as causative to neurodegeneration, with tauopathies, apolipoprotein E and neuroinflammation considered as other major culprits. Curiously, vascular endothelial barrier dysfunction is strongly associated with Aß deposition and 80-90% AD subjects also experience cerebral amyloid angiopathy. Here we show amyloid protein-induced endothelial leakiness (APEL) in human microvascular endothelial monolayers as well as in mouse cerebral vasculature. Using signaling pathway assays and discrete molecular dynamics, we revealed that the angiopathy first arose from a disruption to vascular endothelial (VE)-cadherin junctions exposed to the nanoparticulates of Aß oligomers and seeds, preceding the earlier implicated proinflammatory and pro-oxidative stressors to endothelial leakiness. These findings were analogous to nanomaterials-induced endothelial leakiness (NanoEL), a major phenomenon in nanomedicine depicting the paracellular transport of anionic inorganic nanoparticles in the vasculature. As APEL also occurred in vitro with the oligomers and seeds of alpha synuclein, this study proposes a paradigm for elucidating the vascular permeation, systemic spread, and cross-seeding of amyloid proteins that underlie the pathogeneses of AD and Parkinson's disease.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Mice , Animals , Amyloid beta-Peptides/metabolism , Protein Aggregates , Amyloidogenic Proteins/metabolism , Alzheimer Disease/metabolism , Brain/metabolism
6.
Expert Opin Drug Deliv ; 21(1): 71-89, 2024.
Article En | MEDLINE | ID: mdl-38217410

INTRODUCTION: Successful neuropharmacology requires optimization of CNS drug delivery and, by extension, free drug concentrations at brain molecular targets. Detailed assessment of blood-brain barrier (BBB) physiological characteristics is necessary to achieve this goal. The 'next frontier' in CNS drug delivery is targeting BBB uptake transporters, an approach that requires evaluation of brain endothelial cell transport processes so that effective drug accumulation and improved therapeutic efficacy can occur. AREAS COVERED: BBB permeability of drugs is governed by tight junction protein complexes (i.e., physical barrier) and transporters/enzymes (i.e., biochemical barrier). For most therapeutics, a component of blood-to-brain transport involves passive transcellular diffusion. Small molecule drugs that do not possess acceptable physicochemical characteristics for passive permeability may utilize putative membrane transporters for CNS uptake. While both uptake and efflux transport mechanisms are expressed at the brain microvascular endothelium, uptake transporters can be targeted for optimization of brain drug delivery and improved treatment of neurological disease states. EXPERT OPINION: Uptake transporters represent a unique opportunity to optimize brain drug delivery by leveraging the endogenous biology of the BBB. A rigorous understanding of these transporters is required to improve translation from the bench to clinical trials and stimulate the development of new treatment paradigms for neurological diseases.


Blood-Brain Barrier , Brain , Blood-Brain Barrier/metabolism , Brain/metabolism , Membrane Transport Proteins/metabolism , Biological Transport/physiology , Pharmaceutical Preparations/metabolism , Central Nervous System Agents
8.
Angew Chem Int Ed Engl ; 63(9): e202309958, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-37943171

Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.


Amyloidosis , Nanocomposites , Humans , Amyloidosis/drug therapy , Amyloid/chemistry , Peptides/chemistry , Amyloidogenic Proteins/chemistry , Amyloid beta-Peptides/chemistry
9.
Int J Stroke ; 19(1): 68-75, 2024 Jan.
Article En | MEDLINE | ID: mdl-37382409

BACKGROUND: Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema. AIMS: Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers. METHODS: A total of 65 patients had measurable supratentorial ischemic lesions. Patients underwent head computed tomography (CT), brain magnetic resonance imaging (MRI) scans, or both at the baseline visit and after 2, 7, 30, and 90 days following enrollment. CT and MRI scans were used to measure four imaging markers of edema: midline shift (MLS), hemisphere volume ratio (HVR), cerebrospinal fluid (CSF) volume, and NWU using semi-quantitative threshold analysis. Trajectories of the markers were summarized, as available. Correlations of the markers of edema were computed and the markers compared by clinical outcome. Regression models were used to examine the effect of 3K3A-activated protein C (APC) treatment. RESULTS: Two measures of mass effect, MLS and HVR, could be measured on all imaging modalities, and had values available across all time points. Accordingly, mass effect reached a maximum level by day 7, normalized by day 30, and then reversed by day 90 for both measures. In the first 2 days after stroke, the change in CSF volume was associated with MLS (ρ = -0.57, p = 0.0001) and HVR (ρ = -0.66, p < 0.0001). In contrast, the change in NWU was not associated with the other imaging markers (all p ⩾ 0.49). While being directionally consistent, we did not observe a difference in the edema markers by clinical outcome. In addition, baseline stroke volume was associated with all markers (MLS (p < 0.001), HVR (p < 0.001), change in CSF volume (p = 0.003)) with the exception of NWU (p = 0.5). Exploratory analysis did not reveal a difference in cerebral edema markers by treatment arm. CONCLUSIONS: Existing cerebral edema imaging markers potentially describe two distinct processes, including lesional water concentration (i.e. NWU) and mass effect (MLS, HVR, and CSF volume). These two types of imaging markers may represent distinct aspects of cerebral edema, which could be useful for future trials targeting this process.


Brain Edema , Brain Ischemia , Ischemic Stroke , Stroke , Humans , Stroke/complications , Stroke/diagnostic imaging , Stroke/drug therapy , Brain Edema/diagnostic imaging , Brain Edema/etiology , Ischemic Stroke/complications , Water/metabolism , Edema/complications , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology
10.
Angew Chem Int Ed Engl ; 63(3): e202315552, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38038248

Droplet-based microfluidics represents a disruptive technology in the field of chemistry and biology through the generation and manipulation of sub-microlitre droplets. To avoid droplet coalescence, fluoropolymer-based surfactants are commonly used to reduce the interfacial tension between two immiscible phases to stabilize droplet interfaces. However, the conventional preparation of fluorosurfactants involves multiple steps of conjugation reactions between fluorinated and hydrophilic segments to form multiple-block copolymers. In addition, synthesis of customized surfactants with tailored properties is challenging due to the complex synthesis process. Here, we report a highly efficient synthetic method that utilizes living radical polymerization (LRP) to produce fluorosurfactants with tailored functionalities. Compared to the commercialized surfactant, our surfactants outperform in thermal cycling for polymerase chain reaction (PCR) testing, and exhibit exceptional biocompatibility for cell and yeast culturing in a double-emulsion system. This breakthrough synthetic approach has the potential to revolutionize the field of droplet-based microfluidics by enabling the development of novel designs that generate droplets with superior stability and functionality for a wide range of applications.


Microfluidics , Surface-Active Agents , Microfluidics/methods , Polymerization , Surface-Active Agents/chemistry , Emulsions , Fluorocarbon Polymers
11.
Nano Lett ; 24(1): 89-96, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-37939013

The ability to target specific tissues and to be internalized by cells is critical for successful nanoparticle-based targeted drug delivery. Here, we combined "stealthy" rod-shaped poly(2-oxazoline) (POx) nanoparticles of different lengths with a cancer marker targeting nanobody and a fluorescent cell internalization sensor via a heat-induced living crystallization-driven self-assembly (CDSA) strategy. A significant increase in association and uptake driven by nanobody-receptor interactions was observed alongside nanorod-length-dependent kinetics. Importantly, the incorporation of the internalization sensor allowed for quantitative differentiation between cell surface association and internalization of the targeted nanorods, revealing unprecedented length-dependent cellular interactions of CDSA nanorods. This study highlights the modularity and versatility of the heat-induced CDSA process and further demonstrates the potential of POx nanorods as a modular nanomedicine platform.


Nanoparticles , Nanotubes , Drug Delivery Systems , Cell Membrane
12.
Stroke ; 55(1): 190-202, 2024 01.
Article En | MEDLINE | ID: mdl-38134249

Drug development for ischemic stroke is challenging as evidenced by the paucity of therapeutics that have advanced beyond a phase III trial. There are many reasons for this lack of clinical translation including factors related to the experimental design of preclinical studies. Often overlooked in therapeutic development for ischemic stroke is the requirement of effective drug delivery to the brain, which is critical for neuroprotective efficacy of several small and large molecule drugs. Advancing central nervous system drug delivery technologies implies a need for detailed comprehension of the blood-brain barrier (BBB) and neurovascular unit. Such knowledge will permit the innate biology of the BBB/neurovascular unit to be leveraged for improved bench-to-bedside translation of novel stroke therapeutics. In this review, we will highlight key aspects of BBB/neurovascular unit pathophysiology and describe state-of-the-art approaches for optimization of central nervous system drug delivery (ie, passive diffusion, mechanical opening of the BBB, liposomes/nanoparticles, transcytosis, intranasal drug administration). Additionally, we will discuss how endogenous BBB transporters represent the next frontier of drug delivery strategies for stroke. Overall, this review will provide cutting edge perspective on how central nervous system drug delivery must be considered for the advancement of new stroke drugs toward human trials.


Ischemic Stroke , Stroke , Humans , Drug Delivery Systems , Stroke/drug therapy , Central Nervous System Agents/pharmacology , Blood-Brain Barrier
13.
Nat Aging ; 3(12): 1561-1575, 2023 Dec.
Article En | MEDLINE | ID: mdl-37957361

Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.


COVID-19 , Humans , Mice , Animals , Aged , Senotherapeutics , SARS-CoV-2 , Aging , Brain
14.
Nat Commun ; 14(1): 7815, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38016940

4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites. Unlike rigid nanoparticles, the soft and liquid nature of nanoparticles reduces glass transition temperature, tensile stress, and modulus of 3D-printed materials. This approach enables the photothermal-induced 4D printing of composites, as demonstrated by the programmed shape memory of 3D-printed composites rapidly recovering to their original shape in 60 s under light irradiation. This work provides a perspective on the use of liquid metal-polymer composites in 4D printing, showcasing their potential for application in the field of soft robots.

16.
Stroke ; 54(11): 2875-2885, 2023 11.
Article En | MEDLINE | ID: mdl-37750296

BACKGROUND: Drug discovery for stroke is challenging as indicated by poor clinical translatability. In contrast, HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (ie, statins) improve poststroke neurological outcomes. This property requires transport across the blood-brain barrier via an endogenous uptake transporter (ie, Oatp1a4 [organic anion transporting polypeptide 1a4]). Our goal was to study Oatp1a4 as a drug delivery mechanism because the blood-brain barrier cannot be assumed to be completely open for all drugs in ischemic stroke. METHODS: Male Sprague-Dawley rats (200-250 g) were subjected to middle cerebral artery occlusion (90 minutes) followed by reperfusion for up to 7 days. Atorvastatin (20 mg/kg, IV) was administered 2 hours following intraluminal suture removal. Involvement of Oatp-mediated transport was determined using fexofenadine (3.2 mg/kg, IV), a competitive Oatp inhibitor. Oatp1a4 transport activity was measured by in situ brain perfusion. Infarction volumes/brain edema ratios and neuronal nuclei expression were determined using 2,3,5-triphenyltetrazolium chloride-stained brain tissue slices and confocal microscopy, respectively. Poststroke functional outcomes were assessed via neurological deficit scores and rotarod analysis. RESULTS: At 2-hour post-middle cerebral artery occlusion, [3H]atorvastatin uptake was increased in ischemic brain tissue. A single dose of atorvastatin significantly reduced post-middle cerebral artery occlusion infarction volume, decreased brain edema ratio, increased caudoputamen neuronal nuclei expression, and improved functional neurological outcomes. All middle cerebral artery occlusion positive effects of atorvastatin were attenuated by fexofenadine coadministration (ie, an Oatp transport inhibitor). CONCLUSIONS: Our data demonstrate that neuroprotective effects of atorvastatin may require central nervous system delivery by Oatp-mediated transport at the blood-brain barrier, a mechanism that persists despite increased cerebrovascular permeability in ischemic stroke. These novel and translational findings support utility of blood-brain barrier transporters in drug delivery for neuroprotective agents.


Brain Edema , Ischemic Stroke , Neuroprotective Agents , Organic Anion Transporters , Stroke , Rats , Animals , Male , Atorvastatin/pharmacology , Rats, Sprague-Dawley , Neuroprotection , Infarction, Middle Cerebral Artery/drug therapy , Stroke/drug therapy , Neuroprotective Agents/pharmacology , Organic Anion Transporters/metabolism
17.
BMC Public Health ; 23(1): 1667, 2023 08 30.
Article En | MEDLINE | ID: mdl-37648981

BACKGROUND AND AIM: While early detection and timely treatments can prevent diabetic retinopathy (DR) related blindness, barriers to receiving these DR services may cause permanent sight loss. Despite having similar prevalence to diabetes and DR, women are less likely than men to perform these behaviors due to multi-faced barriers in screening and receiving follow-up treatments for DR. This study, therefore, aimed at identifying the barriers to - and enablers of - screening and follow-up treatments behaviors for DR among women aged more than 40 years with diabetes from the behavioral perspectives in Bangladesh. METHODS: This Barrier Analysis study interviewed 360 women (180 "Doers" and 180 "Non-doers") to explore twelve behavioral determinants of four DR behaviors including screening, injection of anti-vascular endothelial growth factor (anti-VEGF medication), laser therapy and vitro-retinal surgery. The data analysis was performed to calculate estimated relative risk to identify the degree of association between the determinants and behaviors, and to find statistically significant differences (at p < 0.05) in the responses between the Doers and Non-doers. RESULTS: Access to healthcare facilities was the major barrier impeding women from performing DR behaviors. Difficulty in locating DR service centers, the need to travel long distances, the inability to travel alone and during illness, challenges of paying for transportation and managing workload significantly affected women's ability to perform the behaviors. Other determinants included women's perceived self-efficacy, perceived negative consequences (e.g. fear and discomfort associated with injections or laser treatment), and cues for action. Significant perceived enablers included low cost of DR treatments, supportive attitudes by healthcare providers, government policy, and perceived social norms. CONCLUSION: The study found a host of determinants related to the barriers to and enablers of DR screening and treatment behaviors. These determinants included perceived self-efficacy (and agency), positive and negative consequences, perceived access, perceived social norms, culture, and perceived risk. Further investments are required to enhance the availability of DR services within primary and secondary health institutions along with health behavior promotion to dispel misconceptions and fears related to DR treatments.


Diabetes Mellitus , Diabetic Retinopathy , Female , Humans , Asian People , Bangladesh/epidemiology , Blindness , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/therapy , Health Behavior
18.
Coord Chem Rev ; 4872023 Jul 15.
Article En | MEDLINE | ID: mdl-37305445

Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.

19.
J Mater Chem B ; 11(24): 5390-5399, 2023 06 21.
Article En | MEDLINE | ID: mdl-37219363

In this perspective, we outline a new opportunity for exploiting nanoparticle delivery of antagonists to target G-protein coupled receptors localized in intracellular compartments. We discuss the specific example of antagonizing endosomal receptors involved in pain to develop long-lasting analgesics but also outline the broader application potential of this delivery approach. We discuss the materials used to target endosomal receptors and indicate the design requirements for future successful applications.


Endosomes , Nanomedicine , Animals , Humans , Endosomes/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Polymers/chemistry , Hydrogen-Ion Concentration , Drug Delivery Systems
20.
Adv Drug Deliv Rev ; 197: 114822, 2023 06.
Article En | MEDLINE | ID: mdl-37086918

Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.


Central Nervous System Diseases , Nanoparticles , Humans , Drug Delivery Systems/methods , Brain/diagnostic imaging , Blood-Brain Barrier , Magnetic Iron Oxide Nanoparticles , Pharmaceutical Preparations , Central Nervous System Diseases/drug therapy , Nanoparticles/therapeutic use , Neuroimaging
...