Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Front Microbiol ; 15: 1360488, 2024.
Article En | MEDLINE | ID: mdl-38525076

The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of ß-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.

2.
Ann Plast Surg ; 90(6S Suppl 5): S445-S446, 2023 06 01.
Article En | MEDLINE | ID: mdl-37399476

ABSTRACT: The concept for creating the Northeastern Society of Plastic Surgeons originated in May 1982, at the American Association of Plastic Surgeons in Colorado Springs Colorado. The new society would supplement, not supplant, existing state and small regional societies. Two hundred fifty-seven northeastern plastic surgeons joined the charter membership. The inaugural meeting of the Northeastern Society of Plastic Surgeons was held in Philadelphia, September 1984. The following historical account highlights our society's founding principles and leadership throughout the first 40 years.


Surgeons , Surgery, Plastic , Humans , United States , Societies, Medical
3.
Microb Ecol ; 86(2): 1268-1280, 2023 Aug.
Article En | MEDLINE | ID: mdl-36542127

To better understand functional ecology of bark beetle-microbial symbioses, we characterized yeast associates of North American spruce beetle (Dendroctous rufipennis Kirby) across populations. Seven yeast species were detected; Wickerhamomyces canadensis (Wickerham) Kurtzman et al. (Sachharomycetales: Saccharomycetaceae) was the most common (74% of isolates) and found in all populations. Isolates of W. canadensis were subsequently tested for competitive interactions with symbiotic (Leptographium abietinum, = Grosmannia abietina) and pathogenic (Beauvaria bassiana) filamentous fungi, and isolates were nutritionally profiled (protein and P content). Exposure to yeast headspace emissions had isolate-dependent effects on colony growth of symbiotic and pathogenic fungi; most isolates of W. canadensis slightly inhibited growth rates of symbiotic (L. abietinum, mean effect: - 4%) and entomopathogenic (B. bassiana, mean effect: - 6%) fungi. However, overall variation was high (range: - 35.4 to + 88.6%) and some yeasts enhanced growth of filamentous fungi whereas others were consistently inhibitory. The volatile 2-phenylethanol was produced by W. canadensis and synthetic 2-phenylethanol reduced growth rates of both L. abietinum and B. bassiana by 36% on average. Mean protein and P content of Wickerhamomyces canadensis cultures were 0.8% and 7.2%, respectively, but isolates varied in nutritional content and protein content was similar to that of host tree phloem. We conclude that W. canadensis is a primary yeast symbiont of D. rufipennis in the Rocky Mountains and emits volatiles that can affect growth of associated microbes. Wickerhamomyces canadensis isolates vary substantially in limiting nutrients (protein and P), but concentrations are less than reported for the symbiotic filamentous fungus L. abietinum.


Coleoptera , Ophiostomatales , Phenylethyl Alcohol , Picea , Animals , Coleoptera/microbiology , Yeasts , Symbiosis , North America
4.
Front Microbiol ; 13: 969230, 2022.
Article En | MEDLINE | ID: mdl-36187976

Dendroctonus-bark beetles are associated with microbes that can detoxify terpenes, degrade complex molecules, supplement and recycle nutrients, fix nitrogen, produce semiochemicals, and regulate ecological interactions between microbes. Females of some Dendroctonus species harbor microbes in specialized organs called mycetangia; yet little is known about the microbial diversity contained in these structures. Here, we use metabarcoding to characterize mycetangial fungi from beetle species in the Dendroctonus frontalis complex, and analyze variation in biodiversity of microbial assemblages between beetle species. Overall fungal diversity was represented by 4 phyla, 13 classes, 25 orders, 39 families, and 48 genera, including 33 filamentous fungi, and 15 yeasts. The most abundant genera were Entomocorticium, Candida, Ophiostoma-Sporothrix, Ogataea, Nakazawaea, Yamadazyma, Ceratocystiopsis, Grosmannia-Leptographium, Absidia, and Cyberlindnera. Analysis of α-diversity indicated that fungal assemblages of D. vitei showed the highest richness and diversity, whereas those associated with D. brevicomis and D. barberi had the lowest richness and diversity, respectively. Analysis of ß-diversity showed clear differentiation in the assemblages associated with D. adjunctus, D. barberi, and D. brevicomis, but not between closely related species, including D. frontalis and D. mesoamericanus and D. mexicanus and D. vitei. A core mycobiome was not statistically identified; however, the genus Ceratocystiopsis was shared among seven beetle species. Interpretation of a tanglegram suggests evolutionary congruence between fungal assemblages and species of the D. frontalis complex. The presence of different amplicon sequence variants (ASVs) of the same genus in assemblages from species of the D. frontalis complex outlines the complexity of molecular networks, with the most complex assemblages identified from D. vitei, D. mesoamericanus, D. adjunctus, and D. frontalis. Analysis of functional variation of fungal assemblages indicated multiple trophic groupings, symbiotroph/saprotroph guilds represented with the highest frequency (∼31% of identified genera). These findings improve our knowledge about the diversity of mycetangial communities in species of the D. frontalis complex and suggest that minimal apparently specific assemblages are maintained and regulated within mycetangia.

5.
Ecol Appl ; 32(8): e2704, 2022 12.
Article En | MEDLINE | ID: mdl-35801514

A changing climate is altering ecosystem carbon dynamics with consequences for natural systems and human economies, but there are few tools available for land managers to meaningfully incorporate carbon trajectories into planning efforts. To address uncertainties wrought by rapidly changing conditions, many practitioners adopt resistance and resilience as ecosystem management goals, but these concepts have proven difficult to monitor across landscapes. Here, we address the growing need to understand and plan for ecosystem carbon with concepts of resistance and resilience. Using time series of carbon fixation (n = 103), we evaluate forest management treatments and their relative impacts on resistance and resilience in the context of an expansive and severe natural disturbance. Using subalpine spruce-fir forest with a known management history as a study system, we match metrics of ecosystem productivity (net primary production, g C m-2 year-1 ) with site-level forest structural measurements to evaluate (1) whether past management efforts impacted forest resistance and resilience during a spruce beetle (Dendroctonus rufipennis) outbreak, and (2) how forest structure and physiography contribute to anomalies in carbon trajectories. Our analyses have several important implications. First, we show that the framework we applied was robust for detecting forest treatment impacts on carbon trajectories, closely tracked changes in site-level biomass, and was supported by multiple evaluation methods converging on similar management effects on resistance and resilience. Second, we found that stand species composition, site productivity, and elevation predicted resistance, but resilience was only related to elevation and aspect. Our analyses demonstrate application of a practical approach for comparing forest treatments and isolating specific site and physiographic factors associated with resistance and resilience to biotic disturbance in a forest system, which can be used by managers to monitor and plan for both outcomes. More broadly, the approach we take here can be applied to many scenarios, which can facilitate integrated management and monitoring efforts.


Ecosystem , Picea , Humans , Carbon , Forests , Carbon Cycle
6.
Ecol Appl ; 32(5): e2593, 2022 07.
Article En | MEDLINE | ID: mdl-35340072

Global temperatures are generally increasing, and this is leading to a well documented advancement and extension of seasonal activity of many pest insects. Effects of changing precipitation have received less attention, but might be complex because rain and snow are increasing in some places but decreasing in others. This raises the possibility that altered precipitation could accentuate, or even reverse, the effects of rising temperatures on pest outbreaks. We used >592 K aphid suction-trap captures over 15 years, in the heavily farmed central USA, to examine how the activity of Aphis glycines (soybean aphid), Rhopalosiphum maidis (corn aphid), and Rhopalosiphum padi (bird cherry-oat aphid) changed with variation in both temperature and precipitation. Increasing precipitation caused late-season flight activity of A. glycines and early-season activity of R. padi to shift earlier, while increasing temperature did the same for early-season activity of A. glycines and R. maidis. In these cases, precipitation and temperature exhibited directionally similar, but independent, effects. However, precipitation sometimes mediated temperature effects in complex ways. At relatively low temperatures, greater precipitation generally caused late-season flights of R. maidis to occur earlier. However, this pattern was reversed at higher temperatures with precipitation delaying late-season activity. In contrast, greater precipitation delayed peak flights of R. padi at lower temperatures, but caused them to occur earlier at higher temperatures. So, in these two cases the interactive effects of precipitation on temperature were mirror images of one another. When projecting future aphid flight phenology, models that excluded precipitation covariates consistently underpredicted the degree of phenological advance for A. glycines and R. padi, and underpredicted the degree of phenological delay for R. maidis under expected future climates. Overall, we found broad evidence that changing patterns of aphid flight phenology could only be understood by considering both temperature and precipitation changes. In our study region, temperature and precipitation are expected to increase in tandem, but these correlations will be reversed elsewhere. This reinforces the need to include both main and interactive effects of precipitation and temperature when seeking to accurately predict how pest pressure will change with a changing climate.


Aphids , Fabaceae , Animals , Climate , Seasons , Temperature
7.
Glob Chang Biol ; 27(18): 4283-4293, 2021 Sep.
Article En | MEDLINE | ID: mdl-34216186

Many animals change feeding habits as they progress through life stages, exploiting resources that vary in space and time. However, complex life histories may bring new risks if rapid environmental change disrupts the timing of these switches. Here, we use abundance times series for a diverse group of herbivorous insects, aphids, to search for trait and environmental characteristics associated with declines. Our meta dataset spanned three world regions and >300 aphid species, tracked at 75 individual sites for 10-50 years. Abundances were generally falling, with median changes of -8.3%, -5.6%, and -0.1% per year in the central USA, northwestern USA, and United Kingdom, respectively. Aphids that obligately alternated between host plants annually and those that were agricultural pests exhibited the steepest declines, relative to species able to persist on the same host plant year-round or those in natural areas. This suggests that host alternation might expose aphids to climate-induced phenology mismatches with one or more of their host plant species, with additional risks from exposure to insecticides and other management efforts. Warming temperatures through time were associated with milder aphid declines or even abundance increases, particularly at higher latitudes. Altogether, while a warming world appeared to benefit some aphid species in some places, most aphid species that had time-sensitive movements among multiple host plants seemed to face greater risk of decline. More generally, this suggests that recent human-induced rapid environmental change is rebalancing the risks and rewards associated with complex life histories.


Aphids , Animals , Climate , Climate Change , Herbivory , Humans , Plants
8.
Pest Manag Sci ; 77(9): 3841-3846, 2021 Sep.
Article En | MEDLINE | ID: mdl-33728813

There is considerable interest in applying entomopathogenic fungi as a biological control to limit insect populations due to their low environmental and human applicator impacts. However, despite many promising laboratory tests, there are few examples where these fungi were successfully applied to manage bark beetles. Here, we explore how environmental conditions unique to bark beetle habitats may have limited previous entomopathogenic fungus applications, including variable temperatures, ultraviolet light, bark beetle symbiotic microorganisms, tree phytochemicals, and cryptic bark beetle behaviors. Based on the existing literature, we provide a framework for interpreting the pathogenicity of entomopathogenic fungi to bark beetles, with emphasis on both standardizing and improving laboratory approaches to enhance field applications. Our synthesis indicates that most previous laboratory evaluations are conducted under conditions that are not representative of actual bark beetle systems; this may render fungal isolates functionally non-pathogenic in field settings. We recommend that future studies place particular effort into understanding entomopathogen response to the presence of bark beetle symbiotic microorganisms, plant phytochemicals, and potential as a tree endophyte. Additionally, field application methods should aid entomopathogens in overcoming stressful conditions and allow the fungus to infect multiple bark beetle life stages. © 2021 Society of Chemical Industry.


Beauveria , Coleoptera , Metarhizium , Weevils , Animals , Fungi , Humans , Pest Control, Biological , Plant Bark , Symbiosis
9.
Cardiol Young ; 30(4): 568-570, 2020 Apr.
Article En | MEDLINE | ID: mdl-32102714

Williams syndrome is a multisystem, congenital disorder which is commonly associated with arterial stenoses: supravalvar aortic stenosis and peripheral pulmonary artery stenosis. Venous abnormalities have not been previously reported in children with Williams syndrome. We present a case of a 3-year-old girl with Williams syndrome and diffuse venous ectasia as detected by MRI.


Magnetic Resonance Angiography/methods , Pulmonary Veins/diagnostic imaging , Stenosis, Pulmonary Vein/diagnosis , Williams Syndrome/complications , Child, Preschool , Diagnosis, Differential , Female , Humans , Imaging, Three-Dimensional/methods , Stenosis, Pulmonary Vein/etiology , Williams Syndrome/diagnosis
10.
Annu Rev Entomol ; 63: 169-191, 2018 01 07.
Article En | MEDLINE | ID: mdl-28968147

The transmission of insect-borne plant pathogens, including viruses, bacteria, phytoplasmas, and fungi depends upon the abundance and behavior of their vectors. These pathogens should therefore be selected to influence their vectors to enhance their transmission, either indirectly, through the infected host plant, or directly, after acquisition of the pathogen by the vector. Accumulating evidence provides partial support for the occurrence of vector manipulation by plant pathogens, especially for plant viruses, for which a theoretical framework can explain patterns in the specific effects on vector behavior and performance depending on their modes of transmission. The variability in effects of pathogens on their vectors, however, suggests inconsistency in the occurrence of vector manipulation but also may reflect incomplete information about these systems. For example, manipulation can occur through combinations of specific effects, including direct and indirect effects on performance and behavior, and dynamics in those effects with disease progression or pathogen acquisition that together constitute syndromes that promote pathogen spread. Deciphering the prevalence and forms of vector manipulation by plant pathogens remains a compelling field of inquiry, but gaps and opportunities to advance it remain. A proposed research agenda includes examining vector manipulation syndromes comprehensively within pathosystems, expanding the taxonomic and genetic breadth of the systems studied, evaluating dynamic effects that occur during disease progression, incorporating the influence of biotic and abiotic environmental factors, evaluating the effectiveness of putative manipulation syndromes under field conditions, deciphering chemical and molecular mechanisms whereby pathogens can influence vectors, expanding the use of evolutionary and epidemiological models, and seeking opportunities to exploit these effects to improve management of insect-borne, economically important plant pathogens. We expect this field to remain vibrant and productive in its own right and as part of a wider inquiry concerning host and vector manipulation by plant and animal pathogens and parasites.


Host-Pathogen Interactions , Insect Vectors/microbiology , Plant Diseases/microbiology , Animals , Biological Evolution
11.
New Phytol ; 215(4): 1594-1608, 2017 Sep.
Article En | MEDLINE | ID: mdl-28664542

Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, Ft ) and saturation pulses (maximal fluorescence yields, Fm ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.


Chlorophyll/analysis , Photosynthesis , Remote Sensing Technology/methods , Computer Simulation , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Soil/chemistry , Spectrometry, Fluorescence , Terminology as Topic
12.
J Econ Entomol ; 107(2): 654-60, 2014 Apr.
Article En | MEDLINE | ID: mdl-24772546

Orange mint moths, Pyrausta orphisalis (Walker) (Crambidae), were initially trapped in a study of noctuid moth attraction to floral volatiles. A subsequent series of trapping experiments in commercial mint fields determined that phenylacetaldehyde and 4-oxoisophorone were attractive to P. orphisalis, whereas benzyl acetate, eugenol, cis-jasmone, limonene, linalool, methyl-2-methoxybenzoate, methyl salicylate, beta-myrcene, and 2-phenylethanol were not. When used in combination with phenylacetaldehyde, 4-oxoisophorone and methyl-2-methoxybenzoate increased catches of P. orphisalis in traps by -50%, and beta-myrcene tripled the trap catch. A second crambid species, the false celery leaftier moth, Udea profundalis Packard, was also attracted to phenylacetaldehyde, but was not attracted to any other single-chemical lure. Cis-jasmone, limonene, and 4-oxoisophorone increased catches of U. profundalis by -50% when presented in traps with phenylacetaldehyde, while linalool increased the catch 2.5-fold, and beta-myrcene tripled the trap catch. Both sexes of each species were similarly attracted to most of these lures. These findings provide chemical lures for trapping males and females of both P. orphisalis and U. profundalis.


Acetaldehyde/analogs & derivatives , Flowers/chemistry , Moths/drug effects , Oils, Volatile/pharmacology , Pheromones/pharmacology , Acetaldehyde/pharmacology , Agriculture , Animals , Female , Insect Control , Male , Random Allocation , Species Specificity , Washington
13.
Environ Entomol ; 43(2): 291-7, 2014 Apr.
Article En | MEDLINE | ID: mdl-24534117

Research to discover and develop attractants for the codling moth, Cydia pomonella L., has involved identification of the chemicals eliciting moth orientation to conspecific female moths, host fruits, fermented baits, and species of microbes. Pear ester, acetic acid, and N-butyl sulfide are among those chemicals reported to attract or enhance attractiveness to codling moth. We evaluated the trapping of codling moth with N-butyl sulfide alone and in combination with acetic acid and pear ester in apple orchards. Acetic acid was attractive in two tests and N-butyl sulfide was attractive in one of two tests. N-Butyl sulfide increased catches of codling moth when used with acetic acid to bait traps. N-Butyl sulfide also increased catches of codling moth when added to traps baited with the combination of acetic acid and pear ester. Male and female codling moth both responded to these chemicals and chemical combinations. These results provide a new three-component lure comprising N-butyl sulfide, acetic acid, and pear ester that is stronger for luring codling moth females than other attractants tested.


Insect Control/methods , Moths/physiology , Sex Attractants/chemistry , Sulfides/chemistry , Acetic Acid/chemistry , Acetic Acid/pharmacology , Analysis of Variance , Animals , Dodecanol/analogs & derivatives , Dodecanol/chemistry , Female , Male , Sex Attractants/pharmacology , Sulfides/pharmacology
14.
Plast Reconstr Surg ; 133(3 Suppl): 6-7, 2014 Mar.
Article En | MEDLINE | ID: mdl-25942111
15.
Ecology ; 93(2): 421-9, 2012 Feb.
Article En | MEDLINE | ID: mdl-22624323

Many herbivores consume microbial food sources in addition to plant tissues for nutrition. Despite the ubiquity of herbivore-microbe feeding associations, few studies examine how host plant phenotypes affect microbial symbionts of herbivores. We tested the hypothesis that chemical polymorphism in a plant population mediates the performance of nutritional microbial symbionts. We surveyed the composition of ponderosa pine resin in northern Arizona, USA, for variation in six monoterpenes, and we approximated four chemical phenotypes. We reared populations of an herbivorous tree-killing beetle (Dendroctonus brevicomis) in ponderosa pine host material, controlling for three monoterpene compositions representing an alpha-pinene to delta-3-carene gradient. Beetles were reared in host material where the dominant monoterpene was alpha-pinene, delta-3-carene, or a phenotype that was intermediate between the two. We isolated nutritional fungal symbionts (Entomocorticium sp. B) from beetle populations reared in each phenotype and performed reciprocal growth experiments in media amended to represent four "average" monoterpene compositions. This allowed us to test the effects of natal host phenotype, chemical polymorphism, and the interaction between natal host phenotype and chemical polymorphism on a nutritional symbiont. Three important findings emerged: (1) fungal isolates grew 25-32% faster when acquired from beetles reared in the intermediate phenotype; (2) the mean growth rate of nutritional fungi varied up to 44% depending on which monoterpene composition media was amended with; and (3) fungal isolates uniformly performed best in the intermediate phenotype regardless of the chemical composition of their natal host. The performance of nutritional fungi related to both the chemical "history" of their associated herbivore and the chemical phenotypes they are exposed to. However, all fungal isolates appeared adapted to a common chemical phenotype. These experiments argue in favor of the hypothesis that chemical polymorphism in plant populations mediates growth of nutritional symbionts of herbivores. Intraspecific chemical polymorphism in plants contributes indirectly to the regulation of herbivore populations, and our experiments demonstrate that the ecological effects of plant secondary chemistry extend beyond the trophic scale of the herbivore-plant interaction.


Coleoptera/microbiology , Fungi/drug effects , Herbivory/physiology , Pinus/metabolism , Symbiosis , Terpenes/metabolism , Terpenes/pharmacology , Animals , Fungi/physiology , Pinus/chemistry , Principal Component Analysis , Trees
16.
J Chem Ecol ; 37(11): 1177-83, 2011 Nov.
Article En | MEDLINE | ID: mdl-22072184

Many herbivores are sensitive to the secondary chemistry of their host plants. However, the influence of pine secondary chemicals (monoterpenes) on bark beetle fitness is poorly understood. We tested the hypothesis that the monoterpene composition of the phloem oleoresin of ponderosa pine, Pinus ponderosa var scopulorum, mediates rates of host acceptance, oviposition behavior, and fecundity of the western pine beetle, Dendroctonus brevicomis. We performed reciprocal rearing experiments, controlling for the monoterpene composition (chemotype) of host material. We tested the effects of two geographically interspersed host chemotypes on beetles with unknown (wild) and known (reared F(1)) chemical histories. Host chemotype and insect chemical history did not affect rates of acceptance of host material by female beetles. Insect chemical history affected egg gallery construction, and beetles constructed egg galleries that were on average 24.3% longer when reared in host material that was chemically similar to their natal host material. However, mean egg gallery lengths did not differ between host chemotypes. Insect chemical history also influenced fecundity: F(1) beetles produced 52.7% more offspring on average when reared in host material that was chemically similar to their natal host. Our experiments demonstrate that the chemical history of bark beetles mediates egg gallery construction and fecundity, but not host acceptance. This implicates chemical history as a more important factor than host chemotype in the oviposition behavior and fecundity of D. brevicomis.


Behavior, Animal , Oviposition , Plant Extracts/chemistry , Trees , Weevils/chemistry , Weevils/physiology , Animals , Female , Fertility , Male
17.
Mycologia ; 103(6): 1201-7, 2011.
Article En | MEDLINE | ID: mdl-21659459

Here we report the first experiments testing reciprocal effects between the bark beetle-associated yeast, Ogataea pini, and phytochemicals present in tree tissues (Pinus ponderosa). We tested two hypotheses: (i) tree phytochemicals mediate O. pini growth and (ii) O. pini affects chemical composition of plant tissues. We tested six monoterpenes on O. pini biomass growth in vitro and found that most monoterpenes inhibited O. pini growth; however mean O. pini biomass increased 21.5% when treated with myrcene and 75.5% when treated with terpinolene, relative to control. Ogataea pini was grown on phloem tissue ex vivo to determine whether O. pini affected phloem chemistry. Monoterpene concentrations declined in phloem over time, but phloem colonized by O. pini had significantly different concentrations of monoterpenes at two periods than phloem with no yeast. After 7 d, when O. pini was present, concentrations of the monoterpene Δ-3-carene was 42.9% lower than uncolonized phloem and concentrations of the monoterpene terpinolene was 345.0% higher than uncolonized phloem. After 15 d phloem colonized by O. pini had 505.4% higher concentrations of α-pinene than uncolonized phloem. These experiments suggest that O. pini responds to phytochemicals present in host tissues and the presence of O. pini might alter the chemical environment of phloem tissues during the early stages of beetle development. The interactions between O. pini and phytochemicals in pine vascular tissues might have consequences for the bark beetle that vectors O. pini, Dendroctonus brevicomis.


Coleoptera/microbiology , Pinus/chemistry , Saccharomycetales/growth & development , Symbiosis , Animals , Biomass , Monoterpenes/pharmacology , Saccharomycetales/drug effects
18.
Microb Ecol ; 61(3): 626-34, 2011 Apr.
Article En | MEDLINE | ID: mdl-21085946

Ecologically important microbes other than filamentous fungi can be housed within the fungal-transport structures (mycangia) of Dendroctonus bark beetles. The yeast Ogataea pini (Saccharomycetales: Saccharomycetaceae) was isolated from the mycangia of western pine beetle (Dendroctonus brevicomis) populations in northern Arizona (USA) with a frequency of 56%. We performed a series of in vitro assays to test whether volatile organic compounds produced by O. pini affected radial growth rates of mutualistic and antagonistic species of filamentous fungi that are commonly found in association with the beetle including Entomocorticium sp. B, Ophiostoma minus, Beauvaria bassiana, and an Aspergillus sp. We determined the compounds O. pini produced when grown on 2% malt extract agar using a gas chromatography/mass spectrometry (GC/MS) analysis of headspace volatiles. Volatiles produced by O. pini on artificial media significantly enhanced the growth of the mutualistic Entomocorticium sp. B, and inhibited growth of the entomopathogenic fungus B. bassiana. GC/MS revealed that O. pini produced ethanol, carbon disulfide (CS(2)), and Δ-3-carene in headspace. The results of these studies implicate O. pini as an important component in D. brevicomis community ecology, and we introduce multiple hypotheses for future tests of the effects of yeasts in the symbiont assemblages associated with Dendroctonus bark beetles.


Coleoptera/microbiology , Fungi/growth & development , Saccharomycetales/growth & development , Symbiosis , Volatile Organic Compounds/metabolism , Animals , Arizona , Fungi/isolation & purification , Fungi/metabolism , Gas Chromatography-Mass Spectrometry , Saccharomycetales/isolation & purification , Saccharomycetales/metabolism
...