Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Funct ; 15(6): 3141-3157, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38439638

RESUMEN

Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.


Asunto(s)
Ciego , Almidón Resistente , Solanum tuberosum , Animales , Ratones , Ciego/metabolismo , Ciego/microbiología , Dieta Occidental , Expresión Génica , Microbiota , Encuestas Nutricionales , Almidón Resistente/metabolismo , Solanum tuberosum/química
2.
Front Allergy ; 3: 1029184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452260

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic allergy-mediated condition with an increasing incidence in both children and adults. Despite EoE's strong impact on human health and welfare, there is a large unmet need for treatments with only one recently FDA-approved medication for EoE. The goal of this study was to establish swine as a relevant large animal model for translational biomedical research in EoE with the potential to facilitate development of therapeutics. We recently showed that after intraperitoneal sensitization and oral challenge with the food allergen hen egg white protein (HEWP), swine develop esophageal eosinophilia-a hallmark of human EoE. Herein, we used a similar sensitization and challenge treatment and evaluated immunological and pathological markers associated with human EoE. Our data demonstrate that the incorporated sensitization and challenge treatment induces (i) a systemic T-helper 2 and IgE response, (ii) a local expression of eotaxin-1 and other allergy-related immune markers, (iii) esophageal eosinophilia (>15 eosinophils/0.24 mm2), and (iv) esophageal endoscopic findings including linear furrows and white exudates. Thereby, we demonstrate that our sensitization and oral challenge protocol not only induces the underlying immune markers but also the micro- and macro-pathological hallmarks of human EoE. This swine model for EoE represents a novel relevant large animal model that can drive translational biomedical research to develop urgently needed treatment strategies for EoE.

3.
Endocrinology ; 164(1)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36367732

RESUMEN

The influence of birth modality (scheduled cesarean or spontaneous vaginal) on the development of the newborn has been a source of controversy in neonatology. The impact of cesarean vs vaginal birth on the development of bile acid and fibroblast growth factor 19 (FGF19) signaling is unknown. Our aim was to determine the effect of birth modality and gestational age (preterm vs term) on plasma hormone levels, bile acid pool distribution, expression of genes in the bile acid-FXR-FGF19 pathway, and plasma levels of FGF19 at birth and on day 3 of life in neonatal pigs. Four sows underwent cesarean delivery on gestation day 105 (n = 2) and 114 (n = 2; term = 115 days), and 2 additional sows were allowed to farrow at term (gestation days 112 and 118). Piglets were euthanized at birth (Term-Vaginal n = 6; Term-Cesarean n = 8; Preterm n = 10) for tissue and blood collection, and the remaining pigs received total parenteral nutrition then were fed enterally on day 3 (Term-Vaginal n = 8; Term-Cesarean n = 10; Preterm n = 8), before blood and tissue were collected. Piglets born vaginally had a markedly (30-fold) higher plasma FGF19 at birth than term pigs born via cesarean delivery, and 70-fold higher than preterm pigs (P < 0.001). However, distal ileum FGF19 gene expression was similar in all groups (P > 0.05). Plasma FGF19 positively correlated with plasma cortisol (r = 0.58; P < 0.05) and dexamethasone treatment increased ileal FGF19 expression in cultured pig tissue explants and human enteroids. Our findings suggest that exposure to maternal or endogenous glucocorticoids in the perinatal period may upregulate the development of the bile acid-FGF19 pathway.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hidrocortisona , Parto , Animales , Femenino , Humanos , Embarazo , Ácidos y Sales Biliares , Factores de Crecimiento de Fibroblastos/metabolismo , Edad Gestacional , Hidrocortisona/sangre , Porcinos , Vagina , Animales Recién Nacidos
5.
Front Nutr ; 9: 782667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392294

RESUMEN

Several studies indicate that the four major types of resistant starch (RS1-4) are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs) and can alter the microbiome and host physiology. However, nearly all these studies were conducted in rodents fed with a diet that does not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD) based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet for 6 weeks and then supplemented with 0, 2, 5, or 10% of the RS2, resistant potato starch (RPS), for an additional 3 weeks. The cecal microbiome was analyzed by 16S sequencing. The alpha-diversity of the microbiome decreased with increasing consumption of RPS while a beta-diversity plot showed four discreet groupings based on the RPS level in the diet. The relative abundance of various genera was altered by feeding increasing levels of RPS. In particular, the genus Lachnospiraceae NK4A136 group was markedly increased. Cecal, proximal, and distal colon tissue mRNA abundance was analyzed by RNASeq. The cecal mRNA abundance principal component analysis showed clear segregation of the four dietary groups whose separation decreased in the proximal and distal colon. Differential expression of the genes was highest in the cecum, but substantially decreased in the proximal colon (PC) and distal colon (DC). Most differentially expressed genes were unique to each tissue with little overlap in between. The pattern of the observed gene expression suggests that RPS, likely through metabolic changes secondary to differences in microbial composition, appears to prime the host to respond to a range of pathogens, including viruses, bacteria, and parasites. In summary, consumption of dietary RPS led to significant changes to the microbiome and gene expression in the cecum and to a lesser extent in the proximal and distal colon.

6.
Nutrients ; 14(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268101

RESUMEN

Soy infant formula which is fed to over half a million infants per year contains isoflavones such as genistein, which have been shown to be estrogenic at high concentrations. The developing testis is sensitive to estrogens, raising concern that the use of soy formulas may result in male reproductive toxicity. In the current study, male White-Dutch Landrace piglets received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/kg/d) (M + E2) or supplemented with genistein (84 mg/L of diet; (M + G) from postnatal day 2 until day 21. E2 treatment reduced testis weight (p < 0.05) as percentage of body weight, significantly suppressed serum androgen concentrations, increased tubule area, Germ cell and Sertoli cell numbers (p < 0.05) relative to those of Sow or Milk groups. Soy formula had no such effects relative to Sow or Milk groups. mRNAseq revealed 103 differentially expressed genes in the M + E2 group compared to the Milk group related to endocrine/metabolic disorders. However, little overlap was observed between the other treatment groups. These data suggest soy formula is not estrogenic in the male neonatal piglet and that soy formula does not significantly alter male reproductive development.


Asunto(s)
Fórmulas Infantiles , Isoflavonas , Animales , Genisteína/toxicidad , Isoflavonas/análisis , Masculino , Leche/química , Reproducción , Porcinos
7.
Biol Reprod ; 106(4): 629-638, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35094055

RESUMEN

Increased knowledge of reproduction and health of domesticated animals is integral to sustain and improve global competitiveness of U.S. animal agriculture, understand and resolve complex animal and human diseases, and advance fundamental research in sciences that are critical to understanding mechanisms of action and identifying future targets for interventions. Historically, federal and state budgets have dwindled and funding for the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) competitive grants programs remained relatively stagnant from 1985 through 2010. This shortage in critical financial support for basic and applied research, coupled with the underappreciated knowledge of the utility of non-rodent species for biomedical research, hindered funding opportunities for research involving livestock and limited improvements in both animal agriculture and animal and human health. In 2010, the National Institutes of Health and USDA NIFA established an interagency partnership to promote the use of agriculturally important animal species in basic and translational research relevant to both biomedicine and agriculture. This interagency program supported 61 grants totaling over $107 million with 23 awards to new or early-stage investigators. This article will review the success of the 9-year Dual Purpose effort and highlight opportunities for utilizing domesticated agricultural animals in research.


Asunto(s)
Agricultura , Animales Domésticos , Animales , Ganado , National Institutes of Health (U.S.) , Estados Unidos , United States Department of Agriculture
8.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G117-G133, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851728

RESUMEN

The tissue-specific molecular mechanisms involved in perinatal liver and intestinal farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling are poorly defined. Our aim was to establish how gestational age and feeding status affect bile acid synthesis pathway, bile acid pool size, ileal response to bile acid stimulation, genes involved in bile acid-FXR-FGF19 signaling and plasma FGF19 in neonatal pigs. Term (n = 23) and preterm (n = 33) pigs were born via cesarean section at 100% and 90% gestation, respectively. Plasma FGF19, hepatic bile acid and oxysterol profiles, and FXR target gene expression were assessed in pigs at birth and after a bolus feed on day 3 of life. Pig ileal tissue explants were used to measure signaling response to bile acids. Preterm pigs had smaller, more hydrophobic bile acid pools, lower plasma FGF19, and blunted FXR-mediated ileal response to bile acid stimulation than term pigs. GATA binding protein 4 (GATA-4) expression was higher in jejunum than ileum and was higher in preterm than term pig ileum. Hepatic oxysterol analysis suggested dominance of the alternative pathway of bile acid synthesis in neonates, regardless of gestational age and persists in preterm pigs after feeding on day 3. These results highlight the tissue-specific molecular basis for the immature enterohepatic bile acid signaling via FXR-FGF19 in preterm pigs and may have implications for disturbances of bile acid homeostasis and metabolism in preterm infants.NEW & NOTEWORTHY Our results show that the lower hepatic bile acid synthesis and ileum FXR-FGF19 pathway responsiveness to bile acids contribute to low-circulating FGF19 in preterm compared with term neonatal pigs. The molecular mechanism explaining immature or low-ileum FXR-FGF19 signaling may be linked to developmental patterning effects of GATA-4.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Homeostasis/fisiología , Intestinos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Cesárea/métodos , Colesterol 7-alfa-Hidroxilasa/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Recién Nacido , Recien Nacido Prematuro , Hígado/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Porcinos
9.
Front Nutr ; 9: 1057318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704785

RESUMEN

Resistant starches (RS) are fermented in the cecum and colon to produce short-chain fatty acids and other microbial metabolites that can alter host physiology and the composition of the microbiome. We previously showed that mice fed a Total Western Diet (TWD) based on NHANES data that mimics the composition of a typical American diet, containing resistant potato starch (RPS), produced concentration dependent changes to the cecal short-chain fatty acids, the microbiome composition as well as gene expression changes in the cecum and colon that were most prevalent in mice fed the 10% RPS diet. We were then interested in whether feeding TWD/RPS would alter the resistance to bacterial-induced colitis caused by Citrobacter rodentium (Cr), a mouse pathogen that shares 66.7% of encoded genes with Enteropathogenic Escherichia coli. Mice were fed the TWD for 6 weeks followed by a 3-weeks on the RPS diets before infecting with Cr. Fecal Cr excretion was monitored over time and fecal samples were collected for 16S sequencing. Mice were euthanized on day 12 post-infection and cecal contents collected for 16S sequencing. Cecum and colon tissues were obtained for gene expression analysis, histology and to determine the level of mucosa-associated Cr. Feeding RPS increased the percentage of mice productively infected by Cr and fecal Cr excretion on day 4 post-infection. Mice fed the TWD/10% RPS diet also had greater colonization of colonic tissue at day 12 post-infection and colonic pathology. Both diet and infection altered the fecal and cecal microbiome composition with increased levels of RPS resulting in decreased α-diversity that was partially reversed by Cr infection. RNASeq analysis identified several mechanistic pathways that could be associated with the increased colonization of Cr-infected mice fed 10% RPS. In the distal colon we found a decrease in enrichment for genes associated with T cells, B cells, genes associated with the synthesis of DHA-derived SPMs and VA metabolism/retinoic acid signaling. We also found an increase in the expression of the potentially immunosuppressive gene, Ido1. These results suggest that high-level consumption of RPS in the context of a typical American diet, may alter susceptibility to gastrointestinal bacterial infections.

10.
Nutrients ; 13(12)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959902

RESUMEN

A study was conducted to determine the effects of a diet supplemented with fruits and vegetables (FV) on the host whole blood cell (WBC) transcriptome and the composition and function of the intestinal microbiome. Nine six-week-old pigs were fed a pig grower diet alone or supplemented with lyophilized FV equivalent to half the daily recommended amount prescribed for humans by the Dietary Guideline for Americans (DGA) for two weeks. Host transcriptome changes in the WBC were evaluated by RNA sequencing. Isolated DNA from the fecal microbiome was used for 16S rDNA taxonomic analysis and prediction of metabolomic function. Feeding an FV-supplemented diet to pigs induced differential expression of several genes associated with an increase in B-cell development and differentiation and the regulation of cellular movement, inflammatory response, and cell-to-cell signaling. Linear discriminant analysis effect size (LEfSe) in fecal microbiome samples showed differential increases in genera from Lachnospiraceae and Ruminococcaceae families within the order Clostridiales and Erysipelotrichaceae family with a predicted reduction in rgpE-glucosyltransferase protein associated with lipopolysaccharide biosynthesis in pigs fed the FV-supplemented diet. These results suggest that feeding an FV-supplemented diet for two weeks modulated markers of cellular inflammatory and immune function in the WBC transcriptome and the composition of the intestinal microbiome by increasing the abundance of bacterial taxa that have been associated with improved intestinal health.


Asunto(s)
Células Sanguíneas , Dieta/veterinaria , Suplementos Dietéticos , Frutas , Microbioma Gastrointestinal , Porcinos/metabolismo , Porcinos/microbiología , Transcriptoma , Verduras , Animales , Subgrupos de Linfocitos B/inmunología , Células Sanguíneas/inmunología , Clostridiales , Lipopolisacáridos/biosíntesis , Porcinos/inmunología , Factores de Tiempo
11.
Micromachines (Basel) ; 12(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34945317

RESUMEN

The integration of optical circuits with microfluidic lab-on-chip (LoC) devices has resulted in a new era of potential in terms of both sample manipulation and detection at the micro-scale. On-chip optical components increase both control and analytical capabilities while reducing reliance on expensive laboratory photonic equipment that has limited microfluidic development. Notably, in-situ LoC devices for bio-chemical applications such as diagnostics and environmental monitoring could provide great value as low-cost, portable and highly sensitive systems. Multiple challenges remain however due to the complexity involved with combining photonics with micro-fabricated systems. Here, we aim to highlight the progress that optical on-chip systems have made in recent years regarding the main LoC applications: (1) sample manipulation and (2) detection. At the same time, we aim to address the constraints that limit industrial scaling of this technology. Through evaluating various fabrication methods, material choices and novel approaches of optic and fluidic integration, we aim to illustrate how optic-enabled LoC approaches are providing new possibilities for both sample analysis and manipulation.

12.
J Nutr Biochem ; 90: 108570, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33429036

RESUMEN

Optimizing diet quality in conjunction with statin therapy is currently the most common approach for coronary artery disease (CAD) risk management. Although effects on the cardiovascular system have been extensively investigated, little is known about the effect of these interventions in the colon and subsequent associations with CAD progression. To address this gap, Ossabaw pigs were randomly allocated to receive, for a six-month period, isocaloric amounts of either a heart healthy-type diet (HHD; high in unrefined carbohydrate, unsaturated fat, fiber, supplemented with fish oil, and low in cholesterol) or a Western-type diet (WD; high in refined carbohydrate, saturated fat and cholesterol, and low in fiber), without or with atorvastatin therapy. At the end of the intervention period, colon samples were harvested, mucosa fraction isolated, and RNA sequenced. Gene differential expression and enrichment analyses indicated that dietary patterns and atorvastatin therapy differentially altered gene expression, with diet-statin interactions. Atorvastatin had a more profound effect on differential gene expression than diet. In pigs not receiving atorvastatin, the WD upregulated "LXR/RXR Activation" pathway compared to pigs fed the HHD. Enrichment analysis indicated that atorvastatin therapy lowered inflammatory status in the HHD-fed pigs, whereas it induced a colitis-like gene expression phenotype in the WD-fed pigs. No significant association was identified between gene expression phenotypes and severity of atherosclerotic lesions in the left anterior descending-left circumflex bifurcation artery. These data suggested diet quality modulated the response to atorvastatin therapy in colonic mucosa, and these effects were unrelated to atherosclerotic lesion development.


Asunto(s)
Atorvastatina/farmacología , Colon/metabolismo , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Dieta/métodos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Transcriptoma/efectos de los fármacos , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol en la Dieta/farmacología , Colon/efectos de los fármacos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Dieta Saludable/métodos , Dieta Alta en Grasa/métodos , Dieta Occidental , Grasas de la Dieta/farmacología , Conducta Alimentaria , Femenino , Expresión Génica , Humanos , Masculino , Porcinos
13.
Sci Rep ; 10(1): 12853, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732949

RESUMEN

The pig whipworm Trichuris suis is important in swine production because of its negative effects on pig performance and, notably, to some humans with inflammatory bowel disease as a therapeutic agent that modulates inflammation. The proximal colon of T. suis-infected pigs exhibited general inflammation around day 21 after inoculation with infective eggs that is transcriptionally characterized by markers of type-2 immune activation, inflammation, cellular infiltration, tissue repair enzymes, pathways of oxidative stress, and altered intestinal barrier function. Prominent gene pathways involved the Th2-response, de novo cholesterol synthesis, fructose and glucose metabolism, basic amino acid metabolism, and bile acid transport. Upstream regulatory factor analysis implicated the bile acid/farnesoid X receptor in some of these processes. Metabolic analysis indicated changes in fatty acids, antioxidant capacity, biochemicals related to methylation, protein glycosylation, extracellular matrix structure, sugars, Krebs cycle intermediates, microbe-derived metabolites and altered metabolite transport. Close to 1,200 differentially expressed genes were modulated in the proximal colon of pigs with a persistent adult worm infection that was nearly 90% lower in pigs that had expelled worms. The results support a model to test diets that favorably alter the microbiome and improve host intestinal health in both pigs and humans exposed to Trichuris.


Asunto(s)
Colon/inmunología , Colon/metabolismo , Metabolómica , Enfermedades de los Porcinos/metabolismo , Porcinos , Tricuriasis/metabolismo , Tricuriasis/veterinaria , Aminoácidos/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/biosíntesis , Ácidos Grasos/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Humanos , Inflamación , Estrés Oxidativo , Receptores Citoplasmáticos y Nucleares/metabolismo , Enfermedades de los Porcinos/inmunología , Células Th2/inmunología , Tricuriasis/inmunología
14.
mSystems ; 5(4)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753508

RESUMEN

Exclusive breastfeeding impacts the intestinal microbiome and is associated with a better immune function than is seen with milk formula (MF) feeding in infants and yet with mechanisms poorly defined. The porcine model was used to evaluate the impact of MF on ileum microbial communities and gene expression relative to human milk (HM)-fed piglets. Fifty-two Dutch Landrace male piglets were fed an isocaloric diet of either HM (n = 26) or MF (n = 26) from day 2 through day 21 of age and weaned to a solid diet until day 51. Eleven piglets from each group were euthanized at day 21, while the remaining piglets (HM, n = 15; MF, n = 15) were euthanized at day 51 to collect ileal epithelium (EP) scrapings and ileal (IL) tissues. The epithelial mucosa was subjected to shotgun metagenome sequencing, and EP and IL tissues were used for transcriptome analysis. On day 21, transcriptome data revealed that the levels of pathways involved in inflammation and apoptosis were significantly higher in MF piglets than in HM piglets, whereas the levels of tight junctions and pathogen detection systems were lower in MF piglets than in HM piglets. The MF impacts on the small intestine were maintained over the postweaning period (day 51) as indicated by higher levels of Dialister invisus bacteria and higher levels of expression of genes associated with inflammation and apoptosis pathways relative to HM group. The current study demonstrated that MF might impact local intestinal inflammation, apoptosis, and tight junctions and might suppress pathogen recognition in the small intestine compared with HM.IMPORTANCE Exclusive human milk (HM) breastfeeding for the first 6 months of age in infants is recommended to improve health outcomes during early life and beyond. When women are unable to provide sufficient HM, milk formula (MF) is often recommended as a complementary or alternative source of nutrition. Previous studies in piglets demonstrated that MF alters the gut microbiome and induces inflammatory cytokine production. The links between MF feeding, gut microbiome, and inflammation status are unclear due to challenges associated with the collection of intestinal samples from human infants. The current report provides the first insight into MF-microbiome-inflammation connections in the small intestine compared with HM feeding using a porcine model. The present results showed that, compared with HM, MF might impact immune function through the induction of ileal inflammation, apoptosis, and tight junction disruptions and likely compromised immune defense against pathogen detection in the small intestine relative to piglets that were fed HM.

15.
Front Immunol ; 11: 605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431691

RESUMEN

We previously demonstrated that IL4, IL13, CLCA1, and CCL26 mRNA were significantly upregulated in the lungs of pigs given a low dose of all trans-retinoic acid (ATRA) and infected with Ascaris suum. We also demonstrated that in vitro ATRA induced a state of partial alternative activation in porcine macrophages (Mφs) and amplified certain aspects of M2a activation induced by IL-4. Given these results, we tested the effect of ATRA on IL-4 responses in two porcine intestinal epithelial cell lines, IPEC1 and IPEC-J2 and observed that ATRA increased mRNA for the IL-4 receptor alpha chain. ATRA also increased IL-4 induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) and mRNA expression of the chloride channel, calcium activated, family member 1 (CLCA1), important for mucus formation, and chemokine (C-C motif) ligand 26 (CCL26), a potent eosinophil chemoattractant. We extended these findings to human Mφ THP-1 cells and showed that ATRA synergistically increased IL-4-induced CCL2, CCL13, and CCL26 mRNA and protein levels. Transglutaminase 2 mRNA, protein, and enzyme activity were synergistically induced in THP-1 cells pretreated with ATRA and then treated with IL-4, thus, ATRA increased signaling in response to IL-4 in porcine epithelial cells and porcine and human Mφs. Given the prevalence of allergic and parasitic diseases worldwide and the close similarities in the porcine and human immune responses, these findings have important implications for the nutritional regulation of allergic inflammation at mucosal surfaces.


Asunto(s)
Interleucina-4/farmacología , Mucosa Intestinal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Tretinoina/farmacología , Animales , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL26/genética , Sinergismo Farmacológico , Proteínas de Unión al GTP/genética , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/fisiología , Macrófagos/inmunología , Macrófagos/fisiología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transducción de Señal/efectos de los fármacos , Porcinos , Transglutaminasas/genética
16.
Res Vet Sci ; 131: 266-300, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32442727

RESUMEN

Pigs are a major food source worldwide as well as major biomedical models for human physiology and therapeutics. A thorough understanding of porcine immunity is essential to prevent and treat infectious diseases, and develop effective vaccines and therapeutics. The use of pigs as biomedical models is dependent on the growing molecular and immune toolbox. This paper summarizes current knowledge of swine cytokines, chemokines and growth factors, identifying 289 pig proteins, characterizing knowledge of their gene structures and families. It identifies areas in the current swine genome build that need to be clarified. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal and polyclonal antibodies reacting with porcine cytokines, chemokines, growth factors along with availability of cloned recombinant proteins and assays for their quantitation. This process identified numerous reagents that are reportedly reactive with 170 pig cytokines, chemokines, growth factors: 118 have at least one commercial antibody reagent, 66 a cloned recombinant peptide, and 97 with quantitative assays. This affirms the great need to develop and characterize additional reagents. There are panels of reagents for numerous high priority targets that have been essential reagents for characterizing porcine immunity, disease and vaccine responses, and factors regulating development of innate immune responses, polarized macrophages and lymphoid cells including T regulatory cells. Yet there are many areas requiring investment of efforts to more effectively explore the pig immune system. The development of more reagents to understand the complex of cytokines, chemokines, and growth factors will clearly advance these initiatives.


Asunto(s)
Quimiocinas/metabolismo , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Porcinos/metabolismo , Animales , Quimiocinas/genética , Clonación Molecular , Citocinas/genética , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética
17.
Food Sci Nutr ; 7(8): 2565-2576, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31428344

RESUMEN

Treatment of mice with a pomegranate peel extract (PPX) decreased the pathogenicity of Citrobacter rodentium (Cr) infections. Here, we investigate the effects of PPX on the microbiome of uninfected or Cr-infected C3H/HeNCr mice by 16S rRNA gene sequencing. Mice were treated with water or PPX for 14 days, feces were collected, and then, the mice were infected with Cr and feces collected again at day 6 postinfection. DNA was isolated from the fecal samples and subjected to 16S rRNA gene sequencing to determine the microbial composition. Differences in the composition of the microbiome were observed for untreated and PPX-treated mice with PPX mice having decreased diversity. PPX treatment decreased the Firmicutes/Bacteroidetes ratio by increasing Bacteroidetes and decreasing Firmicutes levels. The decrease in Firmicutes was driven by a large reduction in Lactobacillus. PPX treatment increased the abundance of Proteobacteria and Verrucomicrobiae and decreased Actinobacteria. The relative abundance of Cr reached 22% in water-treated but only 5% in PPX-treated infected mice. These results suggest that consumption of pomegranate polyphenols altered the microbiome, making it more resistant to displacement by infection with Cr, indicating that pomegranate polyphenols may mitigate the pathogenic effects of food-borne bacterial pathogens.

18.
J Evol Biol ; 32(8): 868-877, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31134703

RESUMEN

There is considerable debate over the value of male sexual ornaments as signals of genetic quality. Studies alternately report that environmental variation enhances or diminishes the genetic signal, or leads to crossover where genotypes perform well in one environment but poorly in another. A unified understanding is lacking. We conduct a novel experimental test examining the dual effects of distinct categories of genetic (inbred vs. crossed parental lines) and environmental quality (low, through high to extreme larval food stress) on a condition-dependent male ornament. We find that differences in genetic quality signalled by the ornament (male eyespan in Diasemopsis meigenii stalk-eyed flies) become visible and are amplified under high stress but are overwhelmed in extreme-stress environments. Variance among independent genetic lines increases with environmental stress in both genetic quality classes, but at a slower rate in high quality outcrossed flies. Individual genetic lines generally maintain their ranks across environments, except among high quality lines under low environmental stress, where low genetic variance among lines precludes differentiation between ranks. Our results provide a conceptual advance, demonstrating a unified pattern for how genetic and environmental quality interact. They show when environmental conditions lead to the amplification of differences in signals of genetic quality and thereby enhance the potential indirect genetic benefits gained by female mate choice.


Asunto(s)
Dípteros/genética , Dípteros/fisiología , Aptitud Genética , Preferencia en el Apareamiento Animal , Estrés Fisiológico , Animales , Ambiente , Femenino , Masculino
19.
Dev Comp Immunol ; 98: 20-33, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30974109

RESUMEN

We previously demonstrated that the most bioactive vitamin A metabolite, all-trans retinoic acid (ATRA), increased T helper 2-associated responses induced in pigs by infection with the parasitic nematode Ascaris suum We also showed that ATRA potentiated the mRNA expression of several IL-4 induced chemokines (chemokine (CC motif) ligand 11 [(CCL11), CCL17, CCL22 and CCL26] associated with alternative activation (M2a) in porcine macrophages in vitro. Herein, several mechanisms whereby ATRA affects IL-4 signaling are profiled using large-scale real time PCR and RNA-Seq analysis. Twenty-three genes associated with M2a markers in other species were independently upregulated by both IL-4 and ATRA, including the adenosine receptor A2B (ADORA2B), cysteinyl leukotriene receptor 2 (CYSLTR2) and the vitamin D receptor (VDR). ATRA synergistically enhanced IL-4 up-regulation of Hepatitis A virus cellular receptor 2 (HAVCR2) and transglutaminase 2 (TGM2) and further repressed IL-4 down-regulated CD163 and Cytochrome b-245, beta polypeptide (CYBB) mRNA. Macrophages treated with ATRA exhibited a dose-dependent reduction in phagocytosis of opsonized Staphylococcus aureus. In addition, the combination of IL-4 and ATRA up-regulated the anti-inflammatory protein, IL-1R antagonist (IL1RN) and TGM2. These data indicate that ATRA induces a state of partial alternative activation in porcine macrophages, and amplifies certain aspects of M2a activation induced by IL-4. Given the prevalence of allergic and parasitic diseases worldwide and the close similarities in the porcine and human immune responses, these findings have important implications for the nutritional regulation of allergic inflammation at mucosal surfaces.


Asunto(s)
Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Fagocitosis/efectos de los fármacos , Tretinoina/farmacología , Animales , Células Cultivadas , Quimiocinas/genética , Quimiocinas/inmunología , Humanos , Interleucina-4/farmacología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/clasificación , Macrófagos/metabolismo , Fagocitosis/inmunología , Staphylococcus aureus/inmunología , Porcinos , Transcriptoma/efectos de los fármacos , Transcriptoma/inmunología
20.
ILAR J ; 59(3): 323-337, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-30476076

RESUMEN

Influenza is a viral respiratory disease having a major impact on public health. Influenza A virus (IAV) usually causes mild transitory disease in humans. However, in specific groups of individuals such as severely obese, the elderly, and individuals with underlying inflammatory conditions, IAV can cause severe illness or death. In this review, relevant small and large animal models for human IAV infection, including the pig, ferret, and mouse, are discussed. The focus is on the pig as a large animal model for human IAV infection as well as on the associated innate immune response. Pigs are natural hosts for the same IAV subtypes as humans, they develop clinical disease mirroring human symptoms, they have similar lung anatomy, and their respiratory physiology and immune responses to IAV infection are remarkably similar to what is observed in humans. The pig model shows high face and target validity for human IAV infection, making it suitable for modeling many aspects of influenza, including increased risk of severe disease and impaired vaccine response due to underlying pathologies such as low-grade inflammation. Comparative analysis of proteins involved in viral pattern recognition, interferon responses, and regulation of interferon-stimulated genes reveals a significantly higher degree of similarity between pig, ferret, and human compared with mice. It is concluded that the pig is a promising animal model displaying substantial human translational value with the ability to provide essential insights into IAV infection, pathogenesis, and immunity.


Asunto(s)
Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Inflamación/metabolismo , Gripe Humana/genética , MicroARNs/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...