Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Sci Rep ; 14(1): 5305, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438420

Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [89Zr]Zr-DFO-anti-TIGIT (89Zr-αTIGIT), to visualize TIGIT in preclinical GBM by immunoPET imaging. PET imaging and biodistribution analysis of 89Zr-αTIGIT demonstrated uptake in the tumor microenvironment of GBM-bearing mice. Blocking antibody and irrelevant antibody tracer studies demonstrated specificity of 89Zr-αTIGIT with significance at a late time point post-tracer injection. However, the magnitude of 89Zr-αTIGIT uptake in tumor, relative to the IgG tracer was minimal. These findings highlight the features and limitations of using 89Zr-αTIGIT to visualize TIGIT in the GBM microenvironment.


Glioblastoma , Glioma , Humans , Animals , Mice , Tissue Distribution , Glioma/diagnostic imaging , Glioblastoma/diagnostic imaging , Positron-Emission Tomography , Receptors, Immunologic , Tumor Microenvironment
2.
EJNMMI Radiopharm Chem ; 8(1): 19, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37578558

BACKGROUND: The liver is a common site for metastatic disease for a variety of cancers, including colorectal cancer. Both primary and secondary liver tumors are supplied through the hepatic artery while the healthy liver is supplied by the portal vein. Transarterial radioembolization (TARE) using yttrium-90 glass or resin microspheres have shown promising results with reduced side-effects but have similar survival benefits as chemoembolization in patients with hepatocellular carcinoma (HCC). This highlights the need for new novel agents against HCC. Targeted alpha therapy (TAT) is highly potent treatment due to the short range (sparing adjacent normal tissue), and densely ionizing track (high linear energy transfer) of the emitted α-particles. The incorporation of α-particle-emitting radioisotopes into treatment of HCC has been extremely limited, with our recent publication pioneering the field of α-particle-emitting TARE (αTARE). This study focuses on an in-depth evaluation of the αTARE-agent [225Ac]Ac-DOTA-TDA-Lipiodol® as an effective therapeutic agent against HCC regarding pharmacokinetics, dosimetry, stability, and therapeutic efficacy. RESULTS: [225Ac]Ac-DOTA-TDA was shown to be a highly stable with bench-top stability at ≥ 95% radiochemical purity (RCP) over a 3-day period and serum stability was ≥ 90% RCP over 5-days. The pharmacokinetic data showed retention in the tumor of [225Ac]Ac-DOTA-TDA-Lipiodol® and clearance through the normal organs. In addition, the tumor and liver acted as suppliers of the free daughters, which accumulated in the kidneys supplied via the blood. The dose limiting organ was the liver, and the estimated maximum tolerable activity based on the rodents whole-body weight: 728-3641 Bq/g (male rat), 396-1982 Bq/g (male mouse), and 453-2263 Bq/g (female mouse), depending on an RBE-value (range 1-5). Furthermore, [225Ac]Ac-DOTA-TDA-Lipiodol® showed significant improvement in survival for both the male and female mice (median survival 47-days) compared with controls (26-days untreated, and 33-35-days Lipiodol® alone). CONCLUSIONS: This study shows that [225Ac]Ac-DOTA-TDA-Lipiodol® is a stable compound allowing for centralized manufacturing and distribution world-wide. Furthermore, the result of this study support the continue development of evaluation of the αTARE-agent [225Ac]Ac-DOTA-TDA-Lipiodol® as a potential treatment option for treating hepatic tumors.

3.
Cancer Res Commun ; 3(7): 1173-1188, 2023 07.
Article En | MEDLINE | ID: mdl-37426447

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Immunotherapy may be promising for the treatment of some patients with GBM; however, there is a need for noninvasive neuroimaging techniques to predict immunotherapeutic responses. The effectiveness of most immunotherapeutic strategies requires T-cell activation. Therefore, we aimed to evaluate an early marker of T-cell activation, CD69, for its use as an imaging biomarker of response to immunotherapy for GBM. Herein, we performed CD69 immunostaining on human and mouse T cells following in vitro activation and post immune checkpoint inhibitors (ICI) in an orthotopic syngeneic mouse glioma model. CD69 expression on tumor-infiltrating leukocytes was assessed using single-cell RNA sequencing (scRNA-seq) data from patients with recurrent GBM receiving ICI. Radiolabeled CD69 Ab PET/CT imaging (CD69 immuno-PET) was performed on GBM-bearing mice longitudinally to quantify CD69 and its association with survival following immunotherapy. We show CD69 expression is upregulated upon T-cell activation and on tumor-infiltrating lymphocytes (TIL) in response to immunotherapy. Similarly, scRNA-seq data demonstrated elevated CD69 on TILs from patients with ICI-treated recurrent GBM as compared with TILs from control cohorts. CD69 immuno-PET studies showed a significantly higher tracer uptake in the tumors of ICI-treated mice compared with controls. Importantly, we observed a positive correlation between survival and CD69 immuno-PET signals in immunotherapy-treated animals and established a trajectory of T-cell activation by virtue of CD69-immuno-PET measurements. Our study supports the potential use of CD69 immuno-PET as an immunotherapy response assessment imaging tool for patients with GBM. Significance: Immunotherapy may hold promise for the treatment of some patients with GBM. There is a need to assess therapy responsiveness to allow the continuation of effective treatment in responders and to avoid ineffective treatment with potential adverse effects in the nonresponders. We demonstrate that noninvasive PET/CT imaging of CD69 may allow early detection of immunotherapy responsiveness in patients with GBM.


Glioblastoma , Animals , Humans , Mice , Glioblastoma/diagnostic imaging , Immunotherapy , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , T-Lymphocytes/metabolism
4.
EJNMMI Res ; 13(1): 55, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37273103

BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targeted positron emission tomography (PET) to detect inflammation in a mouse model of bleomycin-induced fibrotic lung injury. METHOD: Single time-point and longitudinal VLA-4-targeted PET was performed using a high-affinity peptidomimetic radiotracer, 64Cu-LLP2A, at weeks 1, 2, and 4 after bleomycin-induced (2.5 units/kg) lung injury in C57BL/6J mice. The severity of fibrosis was determined by measuring the hydroxyproline content of the lungs and expression of markers of extracellular matrix remodeling. Flow cytometry and histology was performed to determine VLA-4 expression across different leukocyte subsets and their spatial distribution. RESULTS: Lung uptake of 64Cu-LLP2A was significantly elevated throughout different stages of the progression of bleomycin-induced injury. High lung uptake of 64Cu-LLP2A at week-1 post-bleomycin was a predictor of poor survival over the 4-week follow up, supporting the prognostic potential of 64Cu-LLP2A PET during the early stage of the disease. Additionally, the progressive increase in 64Cu-LLP2A uptake from week-1 to week-4 post-bleomycin correlated with the ultimate extent of lung fibrosis and ECM remodeling. Flow cytometry revealed that LLP2A binding was restricted to leukocytes. A combination of increased expression of VLA-4 by alveolar macrophages and accumulation of VLA-4-expressing interstitial and monocyte-derived macrophages as well as dendritic cells was noted in bleomycin-injured, compared to control, lungs. Histology confirmed the increased expression of VLA-4 in bleomycin-injured lungs, particularly in inflamed and fibrotic regions. CONCLUSIONS: VLA-4-targeted PET allows for assessment of the inflammation-fibrosis axis and prediction of disease progression in a murine model. The potential of 64Cu-LLP2A PET for assessment of the inflammation-fibrosis axis in human fibrotic lung diseases needs to be further investigated.

5.
Mol Imaging Biol ; 25(4): 681-691, 2023 08.
Article En | MEDLINE | ID: mdl-36941514

PURPOSE: To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES: Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS: Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS: [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.


Acute Lung Injury , Pneumonia , Mice , Animals , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Leukocyte Elastase , Glucose , Lipopolysaccharides , Disease Models, Animal , Positron-Emission Tomography , Pneumonia/diagnostic imaging , Pneumonia/drug therapy , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
6.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Article En | MEDLINE | ID: mdl-36626557

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , Mice , Animals , Lipopolysaccharides/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/metabolism , Lung/diagnostic imaging , Lung/metabolism , Chemokines/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Molecular Imaging , Receptors, Chemokine
7.
Mol Imaging Biol ; 24(3): 425-433, 2022 06.
Article En | MEDLINE | ID: mdl-34694528

PURPOSE: Despite unprecedented responses to immune checkpoint inhibitors and targeted therapy in melanoma, a major subset of patients progresses and have few effective salvage options. We have previously demonstrated robust, selective uptake of the peptidomimetic LLP2A labeled with Cu-64 ([64Cu]-LLP2A) for positron emission tomography (PET) imaging in subcutaneous and metastatic models of B16F10 murine melanoma. LLP2A binds with high affinity to very late antigen-4 (VLA-4, integrin α4ß1), a transmembrane protein overexpressed in melanoma and other cancers that facilitates tumor growth and metastasis. Yet B16F10 fails to faithfully reflect human melanoma biology, as it lacks certain oncogenic driver mutations, including BRAF mutations found in ≥ 50 % of clinical specimens. Here, we evaluated the PET tracer [64Cu]-CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A) in novel, translational BRAFV600E mutant melanoma models differing in VLA-4 expression-BPR (VLA-4-) and BPRα (VLA-4+). PROCEDURES: BPR cells were transduced with α4 (CD49d) to overexpress intact cell surface VLA-4 (BPRα). The binding affinity of [64Cu]-LLP2A to BPR and BPRα cells was determined by saturation binding assays. [64Cu]-LLP2A internalization into B16F10, BPR, and BPRα cells was quantified via a plate-based assay. Tracer biodistribution and PET/CT imaging were evaluated in mice bearing subcutaneous BPR and BPRα tumors. RESULTS: [64Cu]-LLP2A demonstrated high binding affinity to BPRα (Kd = 1.4 nM) but indeterminate binding to BPR cells. VLA-4+ BPRα and B16F10 displayed comparable time-dependent [64Cu]-LLP2A internalization, whereas BPR internalization was undetectable. PET/CT showed increased tracer uptake in BPRα tumors vs. BPR tumors in vivo, which was validated by significantly greater (p < 0.0001) BPRα tumor uptake in biodistribution analyses. CONCLUSIONS: [64Cu]-LLP2A discriminates BPRα (VLA-4+) vs. BPR (VLA-4-) melanomas in vivo, supporting translation of these BRAF-mutated melanoma models via prospective imaging and theranostic studies. These results extend the utility of LLP2A to selectively target clinically relevant and therapy-resistant tumor variants toward its use for therapeutic patient care.


Integrin alpha4beta1 , Melanoma , Animals , Cell Line, Tumor , Copper Radioisotopes , Disease Models, Animal , Humans , Integrin alpha4beta1/metabolism , Melanoma/diagnostic imaging , Melanoma/genetics , Mice , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Prospective Studies , Proto-Oncogene Proteins B-raf/genetics , Tissue Distribution
8.
J Nucl Med ; 62(2): 280-286, 2021 02.
Article En | MEDLINE | ID: mdl-32680928

Inflammation plays a central role in the pathogenesis of acute lung injury (ALI) during both the acute pneumonitis stage and progression into the chronic fibroproliferative phase, leading to pulmonary fibrosis. Currently, there is an unmet clinical and research need for noninvasive ways to monitor lung inflammation through targeting of immunoregulatory pathways contributing to ALI pathogenesis. In this study, we evaluated the role of targeted imaging of very late antigen-4 (VLA-4), as a key integrin mediating the adhesion and recruitment of immune cells to inflamed tissues, in quantifying lung inflammation in a mouse model of lipopolysaccharide-induced ALI. Methods: ALI was induced by a single intratracheal administration of lipopolysaccharide (10, 20, or 40 µg per mouse) in C57BL/6J mice. Control mice were intratracheally instilled with sterile phosphate-buffered saline. VLA-4-targeted PET/CT was performed 24 h after intravenous injection of a 64Cu-labeled high-affinity peptidomimetic ligand referred to as 64Cu-LLP2A, which is conjugated with the chelator (1,4,8,11-tetraazacyclotetradecane-1-(methane phosphonic acid)-8-(methane carboxylic acid) and a polyethylene glycol 4 linker, at day 2 after the induction of ALI. Ex vivo biodistribution of 64Cu-LLP2A was determined by γ-counting of harvested organs. The severity of lung inflammation was assessed histologically and by measuring the expression of inflammatory markers in the lung tissue lysates using reverse transcription quantitative polymerase chain reaction. Results: Intratracheal lipopolysaccharide instillation led to an acute inflammatory response in the lungs, characterized by increased expression of multiple inflammatory markers and infiltration of myeloid cells, along with a significant and specific increase in 64Cu-LLP2A uptake, predominantly in a peribronchial distribution. There was a strong correlation between the lipopolysaccharide dose and 64Cu-LLP2A uptake, as quantified by in vivo PET (R = 0.69, P < 0.01). Expression levels of both subunits of VLA-4, that is, integrins α4 and ß1, significantly correlated with the expression of multiple inflammatory markers, including tumor necrosis factor-α, interleukin-1ß, and nitric oxide synthase-2, highlighting the potential of VLA-4 as a surrogate marker of acute lung inflammation. Notably, in vivo 64Cu-LLP2A uptake significantly correlated with the expression of multiple inflammatory markers and VLA-4. Conclusion: Our study demonstrates the feasibility of molecular imaging of VLA-4, as a mechanistically relevant target in ALI, and the accuracy of VLA-4-targeted PET in quantification of ongoing lung inflammation in a murine model.


Acute Lung Injury/diagnostic imaging , Acute Lung Injury/metabolism , Integrin alpha4beta1/metabolism , Positron Emission Tomography Computed Tomography , Animals , Biological Transport , Mice , Mice, Inbred C57BL
9.
Blood Adv ; 4(17): 4102-4112, 2020 09 08.
Article En | MEDLINE | ID: mdl-32882004

In sickle cell disease (SCD), very late antigen-4 (VLA-4 or integrin α4ß1) mediates the adhesion of reticulocytes to inflamed, proinflammatory endothelium, a key process in promoting vaso-occlusive episodes (VOEs). We hypothesized that a radionuclide tracer targeting VLA-4 could be harnessed as a positron emission tomography (PET) imaging biomarker of VOEs. We tested the VLA-4 peptidomimetic PET tracer 64Cu-CB-TE1A1P-PEG4-LLP2A (64Cu-LLP2A) for imaging hyper-adhesion-associated VOEs in the SCD Townes mouse model. With lipopolysaccharide (LPS)-induced VOEs, 64Cu-LLP2A uptake was increased in the bone marrow of the humeri and femurs, common sites of VOEs in SCD mice compared with non-SCD mice. Treatment with a proven inhibitor of VOEs (the anti-mouse anti-P-selectin monoclonal antibody [mAb] RB40.34) during LPS stimulation led to a reduction in the uptake of 64Cu-LLP2A in the humeri and femurs to baseline levels, implying blockade of VOE hyper-adhesion. Flow cytometry with Cy3-LLP2A demonstrated an increased percentage of VLA-4-positive reticulocytes in SCD vs non-SCD mice in the bone and peripheral blood after treatment with LPS, which was abrogated by anti-P-selectin mAb treatment. These data, for the first time, show in vivo imaging of VLA-4-mediated hyper-adhesion, primarily of SCD reticulocytes, during VOEs. PET imaging with 64Cu-LLP2A may serve as a valuable, noninvasive method for identifying sites of vaso-occlusion and may provide an objective biomarker of disease severity and anti-P-selectin treatment efficacy in patients with SCD.


Anemia, Sickle Cell , Integrin alpha4beta1 , Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/drug therapy , Animals , Biomarkers , Copper Radioisotopes , Humans , Mice , Mice, Transgenic , Positron-Emission Tomography
10.
Mol Imaging Biol ; 18(3): 402-10, 2016 06.
Article En | MEDLINE | ID: mdl-26552656

PURPOSE: Prostate-specific membrane antigen (PSMA) is highly up-regulated in prostate tumor cells, providing an ideal target for imaging applications of prostate cancer. CTT-1297 (IC50 = 27 nM) is an irreversible phosphoramidate inhibitor of PSMA that has been conjugated to the CB-TE1K1P chelator for incorporation of Cu-64. The resulting positron emission tomography (PET) agent, [(64)Cu]ABN-1, was evaluated for selective uptake both in vitro and in vivo in PSMA-positive cells of varying expression levels. The focus of this study was to assess the ability of [(64)Cu]ABN-1 to detect and distinguish varying levels of PSMA in a panel of prostate tumor-bearing mouse models. PROCEDURES: CTT-1297 was conjugated to the CB-TE1K1P chelator using click chemistry and radiolabeled with Cu-64. Internalization and binding affinity of [(64)Cu]ABN-1 was evaluated in the following cell lines having varying levels of PSMA expression: LNCaP late-passage > LNCaP early passage ≈ C4-2B > CWR22rv1 and PSMA-negative PC-3 cells. PET/X-ray computed tomography imaging was performed in NCr nude mice with subcutaneous tumors of the variant PSMA-expressing cell lines. RESULTS: [(64)Cu]ABN-1 demonstrated excellent uptake in PSMA-positive cells in vitro, with ∼80 % internalization at 4 h for each PSMA-positive cell line with uptake (fmol/mg) correlating to PSMA expression levels. The imaging data indicated significant tumor uptake in all models. The biodistribution for late-passage LNCaP (highest PSMA expression) demonstrated the highest specific uptake of [(64)Cu]ABN-1 with tumor-to-muscle and tumor-to-blood ratios of 30 ± 11 and 21 ± 7, respectively, at 24 h post-injection. [(64)Cu]ABN-1 cleared through all tissues except for PSMA-positive kidneys. CONCLUSION: [(64)Cu]ABN-1 demonstrated selective uptake in PSMA-positive cells and tumors, which correlated to the level of PSMA expression. The data reported herein suggest that [(64)Cu]ABN-1 will selectively target and image variant PSMA expression and in the future will serve as a non-invasive method to follow the progression of prostate cancer in men.


Amides/chemistry , Phosphoric Acids/chemistry , Positron Emission Tomography Computed Tomography/methods , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/diagnostic imaging , Xenograft Model Antitumor Assays , Animals , Blotting, Western , Copper Radioisotopes , Endocytosis , Male , Mice, Nude , Prostatic Neoplasms/pathology , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Tissue Distribution
...