Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 5(3): 1228-44, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26131972

RESUMEN

Characterizing the mechanisms underlying follicle development in the ovary is crucial to understanding female fertility and is an area of increasing research interest. The RNA binding protein Musashi is essential for post-transcriptional regulation of oocyte maturation in Xenopus and is expressed during ovarian development in Drosophila. In mammals Musashi is important for spermatogenesis and male fertility, but its role in the ovary has yet to be characterized. In this study we determined the expression of mammalian Musashi proteins MSI1 and MSI2 during mouse folliculogenesis, and through the use of a MSI2-specific knockout mouse model we identified that MSI2 is essential for normal follicle development. Time-course characterization of MSI1 and MSI2 revealed distinct differences in steady-state mRNA levels and protein expression/localization at important developmental time-points during folliculogenesis. Using a gene-trap mouse model that inactivates Msi2, we observed a significant decrease in ovarian mass, and change in follicle-stage composition due to developmental blocking of antral stage follicles and pre-antral follicle loss through atresia. We also confirmed that hormonally stimulated Msi2-deficient mice produce significantly fewer MII oocytes (60.9% less than controls, p < 0.05). Furthermore, the majority of these oocytes are of poor viability (62.2% non-viable/apoptotic, p < 0.05), which causes a reduction in female fertility evidenced by decreased litter size in Msi2-deficient animals (33.1% reduction to controls, p < 0.05). Our findings indicate that MSI1 and MSI2 display distinct expression profiles during mammalian folliculogenesis and that MSI2 is required for pre-antral follicle development.


Asunto(s)
Técnicas de Inactivación de Genes , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Folículo Ovárico/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Folículo Ovárico/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
PLoS Genet ; 9(5): e1003503, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23696748

RESUMEN

B lymphopoiesis is the result of several cell-commitment, lineage-choice, and differentiation processes. Every differentiation step is characterized by the activation of a new, lineage-specific, genetic program and the extinction of the previous one. To date, the central role of specific transcription factors in positively regulating these distinct differentiation processes to acquire a B cell-specific genetic program is well established. However, the existence of specific transcriptional repressors responsible for the silencing of lineage inappropriate genes remains elusive. Here we addressed the molecular mechanism behind repression of non-lymphoid genes in B cells. We report that the histone deacetylase HDAC7 was highly expressed in pre-B cells but dramatically down-regulated during cellular lineage conversion to macrophages. Microarray analysis demonstrated that HDAC7 re-expression interfered with the acquisition of the gene transcriptional program characteristic of macrophages during cell transdifferentiation; the presence of HDAC7 blocked the induction of key genes for macrophage function, such as immune, inflammatory, and defense response, cellular response to infections, positive regulation of cytokines production, and phagocytosis. Moreover, re-introduction of HDAC7 suppressed crucial functions of macrophages, such as the ability to phagocytose bacteria and to respond to endotoxin by expressing major pro-inflammatory cytokines. To gain insight into the molecular mechanisms mediating HDAC7 repression in pre-B cells, we undertook co-immunoprecipitation and chromatin immunoprecipitation experimental approaches. We found that HDAC7 specifically interacted with the transcription factor MEF2C in pre-B cells and was recruited to MEF2 binding sites located at the promoters of genes critical for macrophage function. Thus, in B cells HDAC7 is a transcriptional repressor of undesirable genes. Our findings uncover a novel role for HDAC7 in maintaining the identity of a particular cell type by silencing lineage-inappropriate genes.


Asunto(s)
Transdiferenciación Celular/genética , Histona Desacetilasas/genética , Linfopoyesis , Macrófagos/citología , Células Precursoras de Linfocitos B/citología , Linfocitos B/citología , Linfocitos B/metabolismo , Sitios de Unión , Diferenciación Celular , Linaje de la Célula , Regulación hacia Abajo , Histona Desacetilasas/metabolismo , Humanos , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción MEF2 , Macrófagos/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Factores Reguladores Miogénicos/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Regiones Promotoras Genéticas
3.
Cell Stem Cell ; 5(5): 554-66, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19896445

RESUMEN

Here we describe a lineage reprogramming system consisting of a B cell line with an estradiol-inducible form of C/EBPalpha where cells can be converted into macrophage-like cells at 100% efficiency within 2 to 3 days. The reprogrammed cells are larger, contain altered organelle and cytoskeletal structures, are phagocytic, and exhibit an inflammatory response. Time-lapse experiments showed that the cells acquire a macrophage morphology and increased migratory activity as early as 10 hr. During induction, thousands of genes become up- or downregulated, including several dozen transcription and chromatin-remodeling factors. Time-limited exposure of cells to the inducer showed that the reprogrammed cells become transgene independent within 1 to 2 days. The reprogramming can be inhibited, at least partially, by perturbation experiments with B cell and macrophage transcription factors. The tightness, robustness, and speed of the system described make it a versatile tool to study biochemical and biological aspects of lineage reprogramming.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Transdiferenciación Celular , Macrófagos/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Línea Celular Transformada , Movimiento Celular/genética , Movimiento Celular/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Ratones , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/inmunología , Proteínas Recombinantes de Fusión/genética , Factor de Transcripción AP-2 , Activación Transcripcional , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...