Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 69: 127-133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31901837

RESUMEN

In the last few years there has been an increasing interest in the measurement of the absorbed dose from radionuclides, with special attention devoted to molecular radiotherapy treatments. In particular, the determination of the absorbed dose from beta emitting radionuclides in liquid solution poses a number of issues when dose measurements are performed using thermoluminescent dosimeters (TLD). Finite volume effect, i.e. the exclusion of radioactivity from the volume occupied by the TLD is one of these. Furthermore, TLDs need to be encapsulated into some kind of waterproof envelope that unavoidably contributes to beta particle attenuation during the measurement. The purpose of this study is twofold: I) to measure the absorbed dose to water, Dw, using LiF:Mg,Cu,P chips inside a PMMA cylindrical phantom filled with a homogenous 90YCl3 aqueous solution II) to assess the uncertainty budget related to Dw measurements. To this purpose, six cylindrical PMMA phantoms were manufactured at ENEA. Each phantom can host a waterproof PMMA stick containing 3 TLD chips encapsulated by a polystyrene envelope. The cylindrical phantoms were manufactured so that the radioactive liquid environment surrounds the whole stick. Finally, Dw measurements were compared with Monte Carlo (MC) calculations. The measurement of absorbed dose to water from 90YCl3 radionuclide solution using LiF:Mg,Cu,P TLDs turned out to be a viable technique, provided that all necessary correction factors are applied. Using this method, a relative combined standard uncertainty in the range 3.1-3.7% was obtained on each Dw measurement. The major source of uncertainty was shown to be TLDs calibration, with associated uncertainties in the range 0.7-2.2%. Comparison of measured and MC-calculated absorbed dose per emitted beta particle provided good results, with the two quantities being in the ratio 1.08.


Asunto(s)
Cobre/química , Fluoruros/química , Compuestos de Litio/química , Magnesio/química , Fósforo/química , Dosimetría Termoluminiscente/instrumentación , Dosimetría Termoluminiscente/métodos , Radioisótopos de Itrio , Algoritmos , Calibración , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosímetros de Radiación , Radioisótopos , Radiometría , Reproducibilidad de los Resultados , Agua/química
2.
Front Plant Sci ; 10: 1334, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708949

RESUMEN

Plant cultivation on spacecraft or planetary outposts is a promising and actual perspective both for food and bioactive molecules production. To this aim, plant response to ionizing radiations, as an important component of space radiation, must be assessed through on-ground experiments due to the potentially fatal effects on living systems. Hereby, we investigated the effects of X-rays and γ-rays exposure on tomato "hairy root" cultures (HRCs), which represent a solid platform for the production of pharmaceutically relevant molecules, including metabolites and recombinant proteins. In a space application perspective, we used an HRC system previously fortified through the accumulation of anthocyanins, which are known for their anti-oxidant properties. Roots were independently exposed to different photon radiations, namely X-rays (250 kV) and γ-rays (Co60, 1.25 MeV), both at the absorbed dose levels of 0.5, 5, and 10 Gy. Molecular changes induced in the proteome of HRCs were investigated by a comparative approach based on two-dimensional difference in-gel electrophoresis (2D-DIGE) technology, which allowed to highlight dynamic processes activated by these environmental stresses. Results revealed a comparable response to both photon treatments. In particular, the presence of differentially represented proteins were observed only when roots were exposed to 5 or 10 Gy of X-rays or γ-rays, while no variations were appreciated at 0.5 Gy of both radiations, when compared with unexposed control. Differentially represented proteins were identified by mass spectrometry procedures and their functional interactions were analyzed, revealing variations in the activation of stress response integrated mechanisms as well as in carbon/energy and protein metabolism. Specific results from above-mentioned procedures were validated by immunoblotting. Finally, a morphometric analysis verified the absence of significant alterations in the development of HRCs, allowing to ascribe the observed variations of protein expression to processes of acclimation to ionizing radiations. Overall results contribute to a meaningful risk evaluation for biological systems exposed to extra-terrestrial environments, in the perspective of manned interplanetary missions planned for the near future.

3.
Phys Med ; 45: 106-116, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29472074

RESUMEN

PURPOSE: To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR20,10) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. METHODS: Dose-area product was determined as the integral of absorbed dose to water (Dw) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR20,10 properties. Aspects relevant to DAPR20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. RESULTS: DAPR20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR20,10 on the measurement setup and the surface over which Dw is integrated. For a given setup, DAPR20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of Dw. CONCLUSIONS: For a specific measurement setup and integration area, DAPR20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters.


Asunto(s)
Fotones/uso terapéutico , Radiometría/métodos , Dosificación Radioterapéutica , Aire , Radioisótopos de Cobalto/uso terapéutico , Simulación por Computador , Método de Montecarlo , Aceleradores de Partículas , Incertidumbre , Agua
4.
EJNMMI Res ; 7(1): 94, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29185067

RESUMEN

BACKGROUND: PET/CT has recently been shown to be a viable alternative to traditional post-infusion imaging methods providing good quality images of 90Y-laden microspheres after selective internal radiation therapy (SIRT). In the present paper, first we assessed the quantitative accuracy of 90Y-PET using an anthropomorphic phantom provided with lungs, liver, spine, and a cylindrical homemade lesion located into the hepatic compartment. Then, we explored the accuracy of different computational approaches on dose calculation, including (I) direct Monte Carlo radiation transport using Raydose, (II) Kernel convolution using Philips Stratos, (III) local deposition algorithm, (IV) Monte Carlo technique (MCNP) considering a uniform activity distribution, and (V) MIRD (Medical Internal Radiation Dose) analytical approach. Finally, calculated absorbed doses were compared with those obtained performing measurements with LiF:Mg,Cu,P TLD chips in a liquid environment. RESULTS: Our results indicate that despite 90Y-PET being likely to provide high-resolution images, the 90Y low branch ratio, along with other image-degrading factors, may produce non-uniform activity maps, even in the presence of uniform activity. A systematic underestimation of the recovered activity, both for the tumor insert and for the liver background, was found. This is particularly true if no partial volume correction is applied through recovery coefficients. All dose algorithms performed well, the worst case scenario providing an agreement between absorbed dose evaluations within 20%. Average absorbed doses determined with the local deposition method are in excellent agreement with those obtained using the MIRD and the kernel-convolution dose calculation approach. Finally, absorbed dose assessed with MC codes are in good agreement with those obtained using TLD in liquid solution, thus confirming the soundness of both calculation approaches. This is especially true for Raydose, which provided an absorbed dose value within 3% of the measured dose, well within the stated uncertainties. CONCLUSIONS: Patient-specific dosimetry is possible even in a scenario with low true coincidences and high random fraction, as in 90Y-PET imaging, granted that accurate absolute PET calibration is performed and acquisition times are sufficiently long. Despite Monte Carlo calculations seeming to outperform all dose estimation algorithms, our data provide a strong argument for encouraging the use of the local deposition algorithm for routine 90Y dosimetry based on PET/CT imaging, due to its simplicity of implementation.

5.
Phys Med Biol ; 62(17): 7036-7055, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28791962

RESUMEN

A systematic study of the PTW microDiamond (MD) output factors (OF) is reported, aimed at clarifying its response in small fields and investigating its suitability for small field reference dosimetry. Ten MDs were calibrated under 60Co irradiation. OF measurements were performed in 6 MV photon beams by a CyberKnife M6, a Varian DHX and an Elekta Synergy linacs. Two PTW silicon diodes E (Si-D) were used for comparison. The results obtained by the MDs were evaluated in terms of absorbed dose to water determination in reference conditions and OF measurements, and compared to the results reported in the recent literature. To this purpose, the Monte Carlo (MC) beam-quality correction factor, [Formula: see text], was calculated for the MD, and the small field output correction factors, [Formula: see text], were calculated for both the MD and the Si-D by two different research groups. An empirical function was also derived, providing output correction factors within 0.5% from the MC values calculated for all of the three linacs. A high reproducibility of the dosimetric properties was observed among the ten MDs. The experimental [Formula: see text] values are in agreement within 1% with the MC calculated ones. Output correction factors within +0.7% and -1.4% were obtained down to field sizes as narrow as 5 mm. The resulting MD and Si-D field factors are in agreement within 0.2% in the case of CyberKnife measurements and 1.6% in the other cases. This latter higher spread of the data was demonstrated to be due to a lower reproducibility of small beam sizes defined by jaws or multi leaf collimators. The results of the present study demonstrate the reproducibility of the MD response and provide a validation of the MC modelling of this device. In principle, accurate reference dosimetry is thus feasible by using the microDiamond dosimeter for field sizes down to 5 mm.


Asunto(s)
Diamante/química , Aceleradores de Partículas/instrumentación , Radiometría/instrumentación , Radiometría/métodos , Calibración , Humanos , Método de Montecarlo , Fotones , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Silicio/química
6.
Phys Med ; 38: 45-53, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28610696

RESUMEN

PURPOSE: The increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6MV beam was also considered for comparison. METHODS: Short term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2-2.2mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40×40cm2 to 0.6×0.6cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector. RESULTS: MicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40×40cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3×3cm2) microDiamond and the unshielded silicon diode were in good agreement. CONCLUSIONS: MicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1cm correction factors accounting for fluence perturbation and volume averaging could be required.


Asunto(s)
Diamante , Fotones , Radiometría/instrumentación , Radiocirugia , Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...