Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(32): 45177-45191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961017

RESUMEN

The intensification of livestock farming can pose risks to the environment due to the increased use of veterinary products and the generation of waste in confined areas. The quality of water bodies near livestock establishments (Areco River (A) and Doblado stream (D), San Antonio de Areco, Buenos Aires, Argentina) was studied by physicochemical parameters, metals, pesticides, emerging contaminants, and lethal and sublethal toxicity (neurotoxicity and oxidative stress) in larvae of the native amphibian Rhinella arenarum. Six sites were selected: upstream (S1A and S1D), at the level (S2A and S2D), and downstream (S3A and S3D) from the establishments. A low concentration of dissolved oxygen was observed in Doblado stream (< 2.34 mg/L). Cu, Mn, V, and Zn exceeded the limits for the protection of aquatic life at various sites. Between 24 and 34 pesticides were detected in all sites, with 2,4-D, atrazine, and metolachlor being the most recurrent. In water and sediment, the concentrations of ivermectin (S2A, 1.32 µg/L and 58.18 µg/kg; S2D, 0.8 µg/L and 85.22 µg/kg) and oxytetracycline (S2A, < 1 mg/L and < 1 mg/kg; S2D, 11.8 mg/L and 39 mg/kg) were higher at sites near the establishments. All sites caused between 30 and 38.3% of lethality and produced neurotoxicity and alterations in the reduced glutathione content. Moreover, larvae exposed to samples from all sites incorporated ivermectin. These results demonstrate the degradation of the studied sites in relation to the agricultural activities of the area, highlighting the need to take measures to protect and preserve aquatic ecosystems.


Asunto(s)
Agricultura , Ecotoxicología , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Calidad del Agua , Animales , Contaminantes Químicos del Agua/análisis , Argentina , Bovinos , Plaguicidas/toxicidad
2.
Drug Test Anal ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922760

RESUMEN

Atrazine is a triazine organochloride herbicide, frequently used in different agricultural activities. Rare acute intoxication with atrazine is reported in production animals, and its metabolism in mammals is unknown. We report a spontaneous case of atrazine acute intoxication in 16.1% animals of a 168-beef heifer herd exposed to the herbicide at a farm located in Buenos Aires province, Argentina. Affected heifers showed different neurological signs and died suddenly, similar to the previous natural atrazine intoxication report. During autopsy, no gross lesions were observed. Different body fluids and tissues samples were collected during postmortem examination. No relevant histopathological findings were observed. High levels of atrazine and its metabolites were detected in different fluids and tissues by ultra-liquid chromatography high performance coupled to triple quadrupole mass spectrometry. These findings suggest ruminal or hepatic metabolization of atrazine in the exposed cattle. This is the first report of quantification and distribution of atrazine and its metabolites in intoxicated mammals providing relevant information for diagnostic purposes.

3.
J Environ Sci Health B ; 59(3): 98-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38297504

RESUMEN

Argentina stands as one of the leading consumers of herbicides. In a laboratory incubation experiment, the persistence and production of degradation metabolites of Atrazine, 2,4-D, and Glyphosate were investigated in a loamy clay soil under two contrasting agricultural practices: continuous soybean cultivation (T1) and intensified rotations with grasses and legumes (T2). The soils were collected from a long-term no-till trial replicating the influence of the meteorological conditions in the productive region. The soil was enriched with diluted concentrations of 6.71, 9.95, and 24 mg a.i./kg-1 of soil for the respective herbicides, equivalent to annual doses commonly used in the productive region. Samples were taken at intervals of 0, 0.5, 1, 2, 4, 6, 8, 16, 32, and 64 days, and analysis was conducted using high-resolution liquid chromatography UPLC MS/MS. An optimal fit to the first-order kinetic model was observed for each herbicide in both rotations, resulting in relatively short half-lives. Intensified crop sequences favored the production of biotic degradation metabolites. The impact of the high frequency of soybean cultivation revealed a trend of soil acidification and a reduced biological contribution to attenuation processes in soil contamination.


Asunto(s)
Atrazina , Herbicidas , Contaminantes del Suelo , Atrazina/análisis , Glifosato , Suelo/química , Argentina , Espectrometría de Masas en Tándem , Contaminantes del Suelo/análisis , Herbicidas/química , Glycine max , Producción de Cultivos , Ácido 2,4-Diclorofenoxiacético
4.
Photochem Photobiol ; 100(1): 87-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37448143

RESUMEN

This study reports valuable information regarding the presence and concentration of a series of photoactive ß-carboline (ßCs) alkaloids (norharmane, harmane, harmine, harmol, harmaline, and harmalol) and their distribution across the floral age and organs of Passiflora caerulea. UHPLC-MS/MS data reported herein reveal that the ßCs' content ranged from 1 to 110 µg kg-1 , depending on the floral organ and age. In certain physiologically relevant organs, such as anthers, ßCs' content was one order of magnitude higher than in other organs, suggesting a special role for ßCs in this specific organ. ßCs' content also varied in a structure-dependent manner. Alkaloids bearing a hydroxyl group at position C(7) of the main ßC ring were present at concentrations one order of magnitude higher than other ßC derivatives investigated. UV-visible and fluorescence spectroscopy of the flower extracts provided complementary information regarding other biologically relevant groups of chromophores (phenolic/indolic derivatives, flavonoids/carotenes, and chlorophylls). Since flowers are constantly exposed to solar radiation, the presence of photoactive ßCs in floral organs may have several (photo)biological implications that are further discussed.


Asunto(s)
Alcaloides , Passiflora , Espectrometría de Masas en Tándem , Carbolinas/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-38044706

RESUMEN

The production of sugarcane bioethanol generates large volumes of vinasse, an effluent whose final disposal can produce an environmental impact that is of concern. The long-term disposal of vinasse in sugarcane fields could challenge crop management, such as the performance of traditional herbicides, by changing soil properties. This study aimed to evaluate the effect of long-term vinasse application on the field and the dissipation of atrazine and ametryn herbicides in a subtropical sugarcane agroecosystem, and to discuss the potential processes involved in it. Vinasse affected soil properties by increasing pH (12%), electrical conductivity (160%), and soil organic carbon (25%) at 0-10 cm depth of soil. Differences in the herbicide calculated sorption coefficient (Kd) varied according to the pedotransfer function applied and the herbicide type (atrazine or ametryn). During the first seven days after herbicide application, the soil underwent long-term vinasse application and increased atrazine and ametryn dissipation 45% and 33%, respectively, compared with the conventional fertilization scheme (control). The Pesticide Root Zone Model revealed that dissipation was mediated mainly by the degradation process rather than transport or other processes. The long-term application of vinasse in a typical sugarcane field of Tucumán, Argentina decreased the potential groundwater pollution of triazines and, adversely, reduced their bioavailability for weed control. For this, the present study presents original information about how long-term treatment with vinasse may require an adaptation of conventional management practices such as the application of herbicides in Argentina and other sugarcane-producing regions. Integr Environ Assess Manag 2023;00:1-12. © 2023 SETAC.

6.
Sci Total Environ ; 900: 166315, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37604376

RESUMEN

The indiscriminate use of pesticides represents high ecological risk in aquatic systems. Recently, the inclusion of epilithic biofilms as a reactive matrix has shown potential in diagnosing the health of water resources. The objective of this study was to use multiple matrices (water, suspended sediments, and biofilms) to discriminate contamination degrees in catchments with long and recent history of intensive pesticide use and to monitor growing season pesticides transfer to watercourses. Two catchments were monitored: one representative of "modern agriculture" in a subtropical environment, and another representative of recent agricultural expansion over the Pampa Biome in subtropical Brazil. Glyphosate and AMPA were accumulated in the biofilms and were detected at all sites and at all monitoring times, in concentrations ranging from 195 to 7673 µg kg-1 and from 225 to 4180 µg kg-1, respectively. Similarly, the fungicide tebuconazole has always been found in biofilms. The biofilms made it possible to discriminate the long-term history of pesticide use in the catchments and even to identify the influx pulses of pesticides immediately after their application to crops, which was not possible with active water sampling and even with suspended sediment monitoring. It is strongly recommended that, in regions with intensive cultivation of soybeans and other genetically modified crops, the presence of glyphosate and its metabolite AMPA be permanently monitored, a practice still very scarce in the literature.


Asunto(s)
Plaguicidas , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Productos Agrícolas , Estaciones del Año , Plantas Modificadas Genéticamente , Biopelículas , Agua , Glifosato
7.
Environ Sci Pollut Res Int ; 30(33): 80293-80310, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37294486

RESUMEN

Neonicotinoids are globally used insecticides, and there are increasing evidence on their negative effects on birds. This study is aimed at characterizing the behavioral and physiological effects of the neonicotinoid imidacloprid (IMI) in a songbird. Adults of Agelaioides badius were exposed for 7 days to non-treated peeled millet and to peeled millet treated with nominal concentrations of 75 (IMI1) and 450 (IMI2) mg IMI/kg seed. On days 2 and 6 of the trial, the behavior of each bird was evaluated for 9 min by measuring the time spent on the floor, the perch, or the feeder. Daily millet consumption, initial and final body weight, and physiological, hematological, genotoxic, and biochemical parameters at the end of exposure were also measured. Activity was greatest on the floor, followed by the perch and the feeder. On the second day, birds exposed to IMI1and IMI2 remained mostly on the perch and the feeder, respectively. On the sixth day, a transition occurred to sectors of greater activity, consistent with the disappearance of the intoxication signs: birds from IMI1 and IMI2 increased their time on the floor and the perch, respectively. Control birds always remained most of the time on the floor. IMI2 birds significantly decreased their feed intake by 31% the first 3 days, compared to the other groups, and significantly decreased their body weight at the end of the exposure. From the set of hematological, genotoxic, and biochemical parameters, treated birds exhibited an alteration of glutathione-S-transferase activity (GST) in breast muscle; the minimal effects observed are probably related to the IMI administration regime. These results highlight that the consumption of less than 10% of the bird daily diet as IMI-treated seeds trigger effects at multiple levels that can impair bird survival.


Asunto(s)
Insecticidas , Pájaros Cantores , Animales , Neonicotinoides/toxicidad , Insecticidas/toxicidad , Nitrocompuestos/análisis , Semillas/química , Peso Corporal
8.
Water Environ Res ; 95(6): e10899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37255341

RESUMEN

Amphibians are subject to several stressors in the aquatic and terrestrial environments, and human activities have profoundly impacted this vertebrate group. The aim of the present study was to analyze physicochemical parameters, metals and pesticide residues, and the toxicity of water and sediment samples from an environment with high agricultural activity (S1: Salto stream; S2: drainage channel downstream from S1) by means of bioassays using Rhinella arenarum (Amphibia: Anura) larvae. Metals and pesticides were analyzed in water and sediment samples by fluorescence spectrometer of X-ray by total reflection and ultra-high-performance liquid chromatography-MS/MS, respectively. For lethality bioassays, 10 larvae (in triplicate) were exposed for 504 h to water and sediment samples. Also, 50 larvae were exposed for 96 h (in triplicate) to water and sediment samples for the evaluation of biomarkers of neurotoxicity, oxidative stress, and genotoxicity. Twenty-six different pesticides (mainly herbicides) were detected in both sites, and Cu, Zn, and Pb exceeded the limit for protection of aquatic life. Lethality was observed in larvae exposed to water and sediment samples from both sites at chronic exposure. Oxidative stress was observed in larvae exposed to both sites. In larvae exposed to samples from S1, alterations in the neurotoxicity biomarkers were observed. These results alert about the degradation of the sites and highlight the need to monitor and control the use of pesticides. PRACTITIONER POINTS: Twenty-six pesticides were detected in water and sediment from Salto stream basin. Significant mortality was observed in larvae exposed to samples from all sites. Sublethal effects were observed mainly in larvae exposed to samples from Salto stream. The degraded quality can be associated with the agricultural activities of the area.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Humanos , Animales , Agua , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas en Tándem , Plaguicidas/análisis , Biomarcadores , Anfibios/metabolismo , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química
9.
J Hazard Mater ; 446: 130675, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608579

RESUMEN

Glyphosate (Gly) and its principal degradation product, the aminomethylphosphonic acid (AMPA) were found in soils from a riparian environment in Argentina. Sixty-five actinobacteria were isolated from these soils, rhizosphere, and plants (Festuca arundinacea and Salix fragilis). The isolate Streptomyces sp. S5 was selected to be used as bioinoculant in a greenhouse test, in which plants, actinobacteria, and their combinations were assessed to bioremediate the riparian soil. The dissipation of both compounds were estimated. All treatments dissipated similarly the Gly, reaching 87-92 % of dissipation. AMPA, dissipation of 38 % and 42 % were obtained by Salix and Festuca, respectively, while they increased to 57 % and 70 % when the actinobacterium was added to each planted system. Regarding the total dissipation, the higher efficiencies for both compounds were achieved by the non-planted soils bioaugmented with the actinobacterium, with 91 % of Gly dissipated and 56 % for AMPA. According to our study, it could be suggested which strategy could be applied depending on the bioremediation type needed. If in situ bioremediation is necessary, the combination of phytoremediation and actinobacteria bioaugmentation could be convenient. On the other hand, if ex situ bioremediation is needed, the inoculation of the soil with an actinobacterium capable to dissipate Gly and AMPA could be the more efficient and easier alternative.


Asunto(s)
Actinobacteria , Festuca , Contaminantes del Suelo , Biodegradación Ambiental , Actinobacteria/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Contaminantes del Suelo/metabolismo , Suelo , Festuca/metabolismo , Glifosato
10.
Aquat Toxicol ; 253: 106342, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327688

RESUMEN

The lower Salado River basin receive agricultural, industrial and domestic waste water. So, the aim was to evaluate the quality of three sampling sites that belong to the Salado River basin (S1: Cululú stream; S2: Salado River, at Esperanza City, S3: Salado River at Santo Tomé City) based on physicochemical parameters, metals and pesticides analyses and ecotoxicity on Rhinella arenarum larvae. R. arenarum larvae (Gosner Stage -GS- 25) were chronically exposed (504h) to complex matrixes of surface water and sediment samples of each site for the determination of the survival rate. Biomarkers of oxidative stress, neurotoxicity and genotoxicity were analyzed in R. arenarum larvae (GS. 25) after exposure (96h) to the complex matrix of water and sediment. The water quality index showed a marginal quality for all sites, influenced mainly by low dissolved oxygen, high total suspended solid, phosphate, nitrite, conductivity, Pb, Cr and Cu levels. Metal concentrations were higher in sediment than in water samples (˜34-35000 times). In total, thirty different pesticides were detected in all water and sediment samples, S1 presented the greatest variety (26). Glyphosate and AMPA were detected in sediments from all sites, being higher in S3. N,N-Diethyl-meta-toluamide (DEET) and atrazine were detected in all water samples. Greatest mortality was observed in larvae exposed to samples from S1 from 288h (43.3%), reaching a maximum value of 50% at 408h. Oxidative stress and genotoxicity were observed in larvae exposed to S1 and S3 matrix samples. Neurotoxicity was observed in larvae exposed to all matrix samples. The integrated biomarker response index showed that larvae exposed to S1 and S3 were the most affected. According to the physicochemical data and the ecotoxicity assessment, this important river basin is significantly degraded and may represent a risk to aquatic biota, especially for R. arenarum larvae.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Ríos , Larva , Argentina , Contaminantes Químicos del Agua/toxicidad , Plaguicidas/análisis , Bufo arenarum , Metales/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/análisis
11.
J Environ Sci Health B ; 57(7): 526-540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502688

RESUMEN

Retention is one of the processes controlling the behavior and fate of pesticides in soil. The objective of this work was to evaluate the adsorption and desorption of glyphosate, AMPA, and metsulfuron-methyl in the main horizons of a Typic Argiudoll destined for agricultural use. For this purpose, the batch equilibrium method was used at a range of concentrations for each compound. Desorption was performed in three consecutive steps after the adsorption experiment. The results obtained showed strong adsorption of glyphosate and AMPA in the three horizons, following the trend B > A > C, with weak desorption. Metsulfuron-methyl, on the other hand, showed weak adsorption in the three horizons, following the trend A > B > C, with relevant desorption. Our results allow us to identify metsulfuron-methyl as the compound that poses the greatest environmental risk in terms of the potential contamination of other areas and groundwater. However, despite their strong adsorption and weak desorption, glyphosate and AMPA also represent potential contaminants of other environmental matrices.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Adsorción , Arilsulfonatos , Glicina/análogos & derivados , Herbicidas/análisis , Suelo , Contaminantes del Suelo/análisis , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/análisis , Glifosato
12.
Curr Microbiol ; 78(5): 1991-2000, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33797566

RESUMEN

Despite the intensive use of glyphosate (GP) and its ubiquitous presence in the environment, studies addressing the presence of microbial genes involved in glyphosate degradation in natural conditions are scarce. Based on the agronomical importance of Bradyrhizobium genus and its metabolic versatility, we tested the hypothesis that species or genotypes of Bradyrhizobium could be a proxy for GP degrader potential in soil. A quantitative PCR assay was designed to target a specific region of the glycine oxidase gene (thiO), involved in the oxidation of glyphosate to AMPA, from known sequences of Bradyrhizobium species. The abundance of the thiO gene was determined in response to herbicide application in soils with different GP exposure history both under field and microcosm conditions. The gene coding for RNA polymerase subunitB (rpoB) was used as a reference for the abundance of total Bradyrhizobia. The assay using the designed primers was linear over a very large concentration range of the target and showed high efficiency and specificity. In a field experiment, there was a differential response related to the history of glyphosate use and the native Bradyrhizobium genotypes. In a soil without previous exposure to herbicides, thiO gene increased over time after glyphosate application with most genotypes belonging to the B. jicamae and B. elkanni supergroups. Conversely, in an agricultural soil with more than 10 years of continuous glyphosate application, the abundance of thiO gene decreased and most genotypes belonged to B. japonicum supergroup. In a microcosm assay, the amount of herbicide degraded after a single application was positively correlated to the number of thiO copies in different agricultural soils from the Pampean Region. Our results suggest that Bradyrhizobium species are differently involved in glyphosate degradation, denoting the existence of metabolically versatile microorganisms which can be explored for sustainable agriculture practices. The relationship between the abundance of thiO gene and the GP degraded in soil point to the use of thiO gene as a proxy for GP degradation in soil.


Asunto(s)
Bradyrhizobium , Herbicidas , Contaminantes del Suelo , Aminoácido Oxidorreductasas , Bradyrhizobium/genética , Glicina/análogos & derivados , Suelo , Contaminantes del Suelo/análisis , Glifosato
13.
Chemosphere ; 263: 128061, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297067

RESUMEN

The present study aimed to assess the ecological risk of 30 current-use agricultural pesticides and biocides in the soil, sediments and aquatic organisms of a mixed land-use basin located in the Depressed Pampas Region of Argentina. Risk Quotients (RQs) were used to evaluate the chronic risk in soil and aquatic organisms, while Toxic Units (TUs) were used to assess the acute risk in sediment-dwelling organisms and aquatic biota. Acetochlor, hydroxy-atrazine, glyphosate, AMPA, metolachlor, imidacloprid and tebuconazole were the only pesticide residues detected (>30%) and quantified in all the matrices evaluated. Glyphosate and AMPA showed the highest concentrations, being their mean and maximum levels 27.90-176.00 µg kg-1 and 270-712.50 µg kg-1 in soils, 8.28-32.0 µg kg-1 and 6.85-17.50 µg kg-1 in sediments, and 1.88-4.36 µg L-1 and 0.66-1.03 µg L-1 in surface water. The RQs in soils showed high chronic risk, mainly due to AMPA and imidacloprid. The TUs in sediments showed acute risk in dwelling organisms, mainly due to glyphosate and imidacloprid. RQs assessment showed a range of chronic risk levels according to the site/sampling event, with higher contribution of atrazine and its metabolites, and acetochlor, whereas TUs assessment showed no acute risk in aquatic biota. In contrast to Europe, in Argentina, there are no restrictions regarding the use of atrazine, acetochlor, imidacloprid and glyphosate to protect aquatic life. Thus, it is recommended that the current Argentine pesticide regulations should be modified to prevent ecological risk and protect ecosystems.


Asunto(s)
Desinfectantes , Herbicidas , Plaguicidas , Contaminantes Químicos del Agua , Argentina , Ecosistema , Monitoreo del Ambiente , Europa (Continente) , Herbicidas/análisis , Plaguicidas/análisis , Medición de Riesgo , Suelo , Agua , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Pollut Res Int ; 28(7): 8530-8538, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33063213

RESUMEN

Monensin is an ionophore antibiotic used as a feed additive and growth promoter in cattle production worldwide. The occurrence of monensin in aquatic surficial ecosystems is of concern due to its possible detrimental effects on human health and native biota. Argentina is one of the most important cattle beef producers worldwide; however, there is little knowledge on the environmental occurrence of monensin and the associated risks to aquatic biota. In this study, we developed a method for the extraction and quantification of monensin in surface water; then, we evaluated the occurrence of monensin in a stream impacted by different animal husbandry's operations, and then, we analyzed the ecological implications of monensin residues on aquatic organisms using the risk quotient (RQ) method. Sampling was carried out on August 2017 from the headwaters to the floodplain of the El Pantanoso stream, Buenos Aires province, Argentina. Monensin detection frequency was 75% (n = 20). The median level was 0.40 µg/L and the maximum concentration was 4.70 µg/L. The main input of monensin was from a cattle slaughterhouse, an activity that has not been considered before in the literature as a source of emission of veterinary pharmaceuticals into the environment. The RQ assessment showed that monensin levels could have potential negative effects on aquatic biota in the sampling site closest to the cattle slaughterhouse. The data obtained in this study shows that monensin was present in El Pantanoso surface waters at levels of high ecotoxicological risk to aquatic biota.


Asunto(s)
Drogas Veterinarias , Contaminantes Químicos del Agua , Animales , Argentina , Biota , Bovinos , Ecosistema , Monitoreo del Ambiente , Monensina , Agua , Contaminantes Químicos del Agua/análisis
15.
Nanomaterials (Basel) ; 9(10)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561528

RESUMEN

The use of iron-based nanomaterials for environmental remediation processes has recently received considerable attention. Here, we employed core-shell magnetite-humic acids nanoparticles as a heterogeneous photosensitizer and iron source in photo-Fenton reaction for the degradation of the psychiatric drug carbamazepine (CBZ). CBZ showed low photodegradation rates in the presence of the magnetic nanoparticles, whereas the addition of hydrogen peroxide at pH = 3 to the system drastically increased the abatement of the contaminant. The measured Fe2+ and Fe3+ profiles point to the generation of Fe3+ at the surface of the nanoparticles, indicating a heterogeneous oxidation of the contaminant mediated by hydroxyl radicals. Products with a higher transformation degree were observed in the photo-Fenton procedure and support the attack of the HO• radical on the CBZ molecule. Promising results encourage the use of the nanoparticles as efficient iron sources with enhanced magnet-sensitive properties, suitable for applications in photo-Fenton treatments for the purification of wastewater.

16.
Photochem Photobiol ; 95(3): 901-908, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30403296

RESUMEN

The proherbicide Isoxaflutole (IXF) hydrolyzes spontaneously to diketonitrile (DKN) a phytotoxic compound with herbicidal activity. In this work, the sensitized degradation of IXF using Riboflavin (Rf), a typical environmentally friendly sensitizer, Fenton and photo-Fenton processes has been studied. The results indicate that only the photo-Fenton process produces a significant degradation of the IXF. Photolysis experiments of IXF sensitized by Riboflavin is not a meaningful process, IXF quenches the Rf excited triplet (3 Rf*) state with a quenching rate constant of 1.5 · 107  m-1  s-1 and no reaction is observed with the species O2 (1 Δg ) or O 2 · - generated from 3 Rf*. The Fenton reaction produces no changes in the IXF concentration. While the photo-Fenton process of the IXF, under typical conditions, it produces a degradation of 99% and a mineralization to CO2 and H2 O of 88%. A rate constant value of 1.0 × 109  m-1  s-1 was determined for the reaction between IXF and HO˙. The photo-Fenton process degradation products were identified by UHPLC-MS/MS analysis.


Asunto(s)
Herbicidas/química , Isoxazoles/química , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Riboflavina/química , Cinética , Luz
17.
Sci Total Environ ; 651(Pt 1): 1377-1387, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30360269

RESUMEN

Epilithic biofilms are communities of microorganisms composed mainly of microbial cells, extracellular polymeric substances from the metabolism of microorganisms, and inorganic materials. Biofilms are a useful tool to assess the impact of anthropic action on aquatic environments including the presence of pesticide residues such as glyphosate. The present work seeks to monitor the occurrence of glyphosate and AMPA residues in epilithic biofilms occurring in a watershed. For this, epilithic biofilm samples were collected in the Guaporé River watershed in the fall and spring seasons of 2016 at eight points. Physicochemical properties of the water and biofilms were determined. The determination of glyphosate and AMPA was performed using an ultra-high performance liquid chromatograph coupled to a tandem mass spectrometer. The concentrations of glyphosate and AMPA detected in epilithic biofilms vary with the season (from 90 to 305 µg kg-1 for glyphosate and from 50 to 240 µg kg-1 for AMPA, in fall and spring, respectively) and are strongly influenced by the amount of herbicide applications. Protected locations and those with poor access not demonstrate the presence of these contaminants. In the other seven points of the Guaporé River watershed, glyphosate was detected in concentrations ranging from 10 to 305 µg kg-1, and concentrations of AMPA ranged from 50 to 670 µg kg-1. An overview of the contamination in the Guaporé watershed shows that the most affected areas are located in the Marau sub-watershed, which are strongly influenced by the presence of the city of Marau. This confirms the indiscriminate use of glyphosate in the urban area (weed control, domestic gardens and horticulture) and constitutes a problem for human and animal health. The results showed that biofilms can accumulate glyphosate resulting from the contamination of water courses and are sensitive to the sources of pollution and pesticides present in rivers.


Asunto(s)
Bacterias/metabolismo , Biopelículas/efectos de los fármacos , Glicina/análogos & derivados , Isoxazoles/metabolismo , Ríos/microbiología , Tetrazoles/metabolismo , Contaminantes Químicos del Agua/metabolismo , Brasil , Monitoreo del Ambiente , Glicina/metabolismo , Herbicidas/metabolismo , Ríos/química , Glifosato
18.
Sci Total Environ ; 634: 974-982, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660891

RESUMEN

This study evaluates the glyphosate dissipation under field conditions in three types of soil, and aims to determine the importance of the following factors in the environmental persistence of herbicide: i) soil bacterial communities, ii) soil physicochemical properties, iii) previous exposure to the herbicide. A soil without previous record of GP application (P0) and two agricultural soils, with 5 and >10years of GP exposure (A5 and A10) were subjected to the application of glyphosate at doses of 3mg·kg-1. The concentration of GP and AMPA was determined over time and the dynamics of soil bacterial communities was evaluated using 16S ARN ribosomal gene amplicon-sequencing. The GP exposure history affected the rate but not the extent of GP biodegradation. The herbicide was degraded rapidly, but P0 soil showed a dissipation rate significantly lower than soils with agricultural history. In P0 soil, a significant increase in the relative abundance of Bacteroidetes was observed in response to herbicide application. More generally, all soils displayed shifts in bacterial community structure, which nevertheless could not be clearly associated to glyphosate dissipation, suggesting the presence of redundant bacteria populations of potential degraders. Yet the application of the herbicide prompted a partial disruption of the bacterial association network of unexposed soil. On the other hand, higher values of linear (Kd) and nonlinear (Kf) sorption coefficient in P0 point to the relevance of cation exchange capacity (CEC), clay and organic matter to the capacity of soil to adsorb the herbicide, suggesting that bioavailability was a key factor for the persistence of GP and AMPA. These results contribute to understand the relationship between bacterial taxa exposed to the herbicide, and the importance of soil properties as predictors of the possible rate of degradation and persistence of glyphosate in soil.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Agricultura , Biodegradación Ambiental , Glicina/análisis , Glicina/metabolismo , Herbicidas/análisis , Suelo/química , Contaminantes del Suelo/análisis , Glifosato
19.
Environ Sci Pollut Res Int ; 25(15): 15120-15132, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29556978

RESUMEN

We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.


Asunto(s)
Monitoreo del Ambiente/métodos , Glicina/análogos & derivados , Herbicidas/análisis , Isoxazoles/análisis , Contaminación Difusa/análisis , Contaminantes del Suelo/análisis , Tetrazoles/análisis , Argentina , Productos Agrícolas/crecimiento & desarrollo , Sedimentos Geológicos/química , Glicina/análisis , Agua Subterránea/química , Ríos/química , Suelo/química , Glifosato
20.
Environ Toxicol Chem ; 36(12): 3206-3216, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28631831

RESUMEN

In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC.


Asunto(s)
Glicina/análogos & derivados , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Argentina , Atrazina/análisis , Productos Agrícolas , Monitoreo del Ambiente , Sedimentos Geológicos/química , Glicina/análisis , Herbicidas/análisis , Isoxazoles , Neonicotinoides/análisis , Nitrocompuestos/análisis , Organofosfonatos/análisis , Lluvia , Ríos , Tetrazoles , Triazoles/análisis , Movimientos del Agua , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA