Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(2): e112287, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36644906

RESUMEN

Proteins exit from endosomes through tubular carriers coated by retromer, a complex that impacts cellular signaling, lysosomal biogenesis and numerous diseases. The coat must overcome membrane tension to form tubules. We explored the dynamics and driving force of this process by reconstituting coat formation with yeast retromer and the BAR-domain sorting nexins Vps5 and Vps17 on oriented synthetic lipid tubules. This coat oligomerizes bidirectionally, forming a static tubular structure that does not exchange subunits. High concentrations of sorting nexins alone constrict membrane tubes to an invariant radius of 19 nm. At lower concentrations, oligomers of retromer must bind and interconnect the sorting nexins to drive constriction. Constricting less curved membranes into tubes, which requires more energy, coincides with an increased surface density of retromer on the sorting nexin layer. Retromer-mediated crosslinking of sorting nexins at variable densities may thus tune the energy that the coat can generate to deform the membrane. In line with this, genetic ablation of retromer oligomerization impairs endosomal protein exit in yeast and human cells.


Asunto(s)
Saccharomyces cerevisiae , Nexinas de Clasificación , Humanos , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Constricción , Endosomas/metabolismo
2.
EMBO J ; 41(10): e109646, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35466426

RESUMEN

Endo-lysosomal compartments exchange proteins by fusing, fissioning, and through endosomal transport carriers. Thereby, they sort many plasma membrane receptors and transporters and control cellular signaling and metabolism. How the membrane fission events are catalyzed is poorly understood. Here, we identify the novel CROP complex as a factor acting at this step. CROP joins members of two protein families: the peripheral subunits of retromer, a coat forming endosomal transport carriers, and membrane inserting PROPPINs. Integration into CROP potentiates the membrane fission activity of the PROPPIN Atg18 on synthetic liposomes and confers strong preference for binding PI(3,5)P2 , a phosphoinositide required for membrane fission activity. Disrupting CROP blocks fragmentation of lysosome-like yeast vacuoles in vivo. CROP-deficient mammalian endosomes accumulate micrometer-long tubules and fail to export cargo, suggesting that carriers attempt to form but cannot separate from these organelles. PROPPINs compete for retromer binding with the SNX-BAR proteins, which recruit retromer to the membrane during the formation of endosomal carriers. Transition from retromer-SNX-BAR complexes to retromer-PROPPIN complexes might hence switch retromer activities from cargo capture to membrane fission.


Asunto(s)
Endosomas , Nexinas de Clasificación , Animales , Endosomas/metabolismo , Lisosomas/metabolismo , Mamíferos , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Nexinas de Clasificación/metabolismo
3.
Autophagy ; 17(11): 3644-3670, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33685363

RESUMEN

Autophagosome formation requires PROPPIN/WIPI proteins and monophosphorylated phosphoinositides, such as phosphatidylinositol-3-phosphate (PtdIns3P) or PtdIns5P. This process occurs in association with mammalian endosomes, where the PROPPIN WIPI1 has additional, undefined roles in vesicular traffic. To explore whether these functions are interconnected, we dissected routes and subreactions of endosomal trafficking requiring WIPI1. WIPI1 specifically acts in the formation and fission of tubulo-vesicular endosomal transport carriers. This activity supports the PtdIns(3,5)P2-dependent transport of endosomal cargo toward the plasma membrane, Golgi, and lysosomes, suggesting a general role of WIPI1 in endosomal protein exit. Three features differentiate the endosomal and macroautophagic/autophagic activities of WIPI1: phosphoinositide binding site II, the requirement for PtdIns(3,5)P2, and bilayer deformation through a conserved amphipathic α-helix. Their inactivation preserves autophagy but leads to a strong enlargement of endosomes, which accumulate micrometer-long endosomal membrane tubules carrying cargo proteins. WIPI1 thus supports autophagy and protein exit from endosomes by different modes of action. We propose that the type of phosphoinositides occupying its two lipid binding sites, the most unusual feature of PROPPIN/WIPI family proteins, switches between these effector functions.Abbreviations: EGF: epidermal growth factorEGFR: epidermal growth factor receptorKD: knockdownKO: knockoutPtdIns3P: phosphatidylinositol-3-phosphatePtdIns5P: phosphatidylinositol-5-phosphatePtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphateTF: transferrinTFRC: transferrin receptorWT: wildtype.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Línea Celular , Endocitosis , Edición Génica , Humanos , Proteínas de la Membrana/fisiología , Microscopía Confocal , Cuerpos Multivesiculares/fisiología , Mutagénesis Sitio-Dirigida
4.
Nat Cell Biol ; 18(8): 839-850, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27398910

RESUMEN

Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PtdIns(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PtdIns(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients.


Asunto(s)
Autofagosomas/fisiología , Autofagia/fisiología , Lisosomas/metabolismo , Fosfatidilinositoles/genética , Monoéster Fosfórico Hidrolasas/genética , Receptor Toll-Like 9/genética , Animales , Autofagia/genética , Línea Celular , Humanos , Mutación/genética , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Pez Cebra
5.
EMBO Mol Med ; 7(7): 973-88, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-25888235

RESUMEN

Filamentous bacteriophage fd particles delivering antigenic determinants via DEC-205 (fdsc-αDEC) represent a powerful delivery system that induces CD8(+) T-cell responses even when administered in the absence of adjuvants or maturation stimuli for dendritic cells. In order to investigate the mechanisms of this activity, RNA-Sequencing of fd-pulsed dendritic cells was performed. A significant differential expression of genes involved in innate immunity, co-stimulation and cytokine production was observed. In agreement with these findings, we demonstrate that induction of proinflammatory cytokines and type I interferon by fdsc-αDEC was MYD88 mediated and TLR9 dependent. We also found that fdsc-αDEC is delivered into LAMP-1-positive compartments and co-localizes with TLR9. Thus, phage particles containing a single-strand DNA genome rich in CpG motifs delivered via DEC-205 are able to intercept and trigger the active TLR9 innate immune receptor into late endosome/lysosomes and to enhance the immunogenicity of the displayed antigenic determinants. These findings make fd bacteriophage a valuable tool for immunization without administering exogenous adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Antígenos CD/metabolismo , Antígenos/inmunología , Células Dendríticas/inmunología , Inovirus/genética , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Anticuerpos de Cadena Única/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Antígenos/metabolismo , Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Técnicas de Visualización de Superficie Celular , Células Cultivadas , Portadores de Fármacos , Perfilación de la Expresión Génica , Inmunidad Innata , Lectinas Tipo C/inmunología , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor , Receptores de Superficie Celular/inmunología , Anticuerpos de Cadena Única/inmunología
6.
PLoS One ; 10(3): e0120998, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811383

RESUMEN

Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Endosomas/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Lisosomas/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Línea Celular , Membrana Celular/metabolismo , Endocitosis , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Cinesinas/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Biosíntesis de Proteínas
7.
Biochim Biophys Acta ; 1851(6): 867-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25510381

RESUMEN

More than twenty different genetic diseases have been described that are caused by mutations in phosphoinositide metabolizing enzymes, mostly in phosphoinositide phosphatases. Although generally ubiquitously expressed, mutations in these enzymes, which are mainly loss-of-function, result in tissue-restricted clinical manifestations through mechanisms that are not completely understood. Here we analyze selected disorders of phosphoinositide metabolism grouped according to the principle tissue affected: the nervous system, muscle, kidney, the osteoskeletal system, the eye, and the immune system. We will highlight what has been learnt so far from the study of these disorders about not only the cellular and molecular pathways that are involved or are governed by phosphoinositides, but also the many gaps that remain to be filled to gain a full understanding of the pathophysiological mechanisms underlying the clinical manifestations of this steadily growing class of diseases, most of which still remain orphan in terms of treatment. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Deformidades Congénitas de las Extremidades/genética , Mutación , Miopatías Estructurales Congénitas/genética , Fosfatidilinositoles/metabolismo , Animales , Enfermedades del Desarrollo Óseo/enzimología , Enfermedades del Desarrollo Óseo/patología , Modelos Animales de Enfermedad , Expresión Génica , Neuropatía Hereditaria Motora y Sensorial/enzimología , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Deformidades Congénitas de las Extremidades/enzimología , Deformidades Congénitas de las Extremidades/patología , Ratones , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
8.
Pediatr Endocrinol Rev ; 12 Suppl 1: 176-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25345100

RESUMEN

Nephropathic cystinosis is a rare lysosomal storage disorder caused by mutations in the CTNS gene ncoding the lysosomal cystine transporter cystinosin. Cystinosin deficiency leads to accumulation of cystine in the lysosomes of cells throughout the body and deregulation of endocytosis, trafficking of intracellular vesicles and related cell signalling processes. One of the early features of the disease is renal Fanconi syndrome characterized by polyuria, proteinuria and urinary loss of various solutes. Later in life, extrarenal complications become apparent, and decline of kidney function leads to the development of end-stage renal disease. Modern therapy of the disease is based on treatment with cystine-lowering drug cysteamine, which helps to postpone the disease progression and development of extra-renal pathologies, but offers no cure for the Fanconi syndrome. Besides the improvement of cystine-lowering therapy based on new formulations of cysteamine, further development of therapy is necessary. Some steps forward were done in the recent years, including studies of cell signalling abnormalities in cystinosis and development of stem cell and gene therapy approaches.


Asunto(s)
Cisteamina/uso terapéutico , Cistinosis/diagnóstico , Cistinosis/tratamiento farmacológico , Cistinosis/etiología , Humanos , Resultado del Tratamiento
9.
EMBO J ; 30(24): 4970-85, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21971085

RESUMEN

Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P(2)) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P(2) in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P(2) and F-actin at the EEs is essential for exporting cargoes that transit this compartment.


Asunto(s)
Actinas/metabolismo , Endocitosis , Endosomas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Biológico , Catálisis , Línea Celular , Endosomas/enzimología , Humanos , Membranas Intracelulares/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA