Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
J Fungi (Basel) ; 9(6)2023 May 28.
Article En | MEDLINE | ID: mdl-37367560

Aspergillus is a genus of saprophytic fungus widely distributed in the environment and associated with soil, decaying vegetation, or seeds. However, some species, such as A. fumigatus, are considered opportunistic pathogens in humans. Their conidia (asexual spores) and mycelia are associated with clinical diseases known as invasive aspergillosis (IA), mainly related to the respiratory tract, such as allergic asthma, allergic bronchopulmonary aspergillosis (ABPA), or hypersensitivity. However, they can also disseminate to other organs, particularly the central nervous system. Due to the dispersal mechanism of the conidia through the air, airborne fungal particle measurement should be used to prevent and control this mold. This study aims to measure the outdoor airborne concentration of Aspergillus conidia and the Asp f 1 allergen concentration in Bellaterra (Barcelona, Spain) during 2021 and 2022, and to compare their dynamics to improve the understanding of the biology of this genus and contribute to a better diagnosis, prevention, and therapeutic measures in the face of possible health problems. The results show that both particles were airborne nearly all year round, but their concentrations showed no correlation. Due to Asp f 1 not being present in the conidia itself but being detectable during their germination and in hyphal fragments, we report the relevance of the aero-immunological analysis as a methodology to detect the potential pathogenic hazard of this fungus.

2.
Sci Total Environ ; 845: 157351, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-35842165

The long-range atmospheric transport models of pollen and fungal spores require four modules for their development: (i) Meteorological module: which contain the meteorological model, and it can be coupled to transport model with the same output configuration (spatio-temporal resolution), or uncoupled does not necessarily have the same output parameters. (ii) Emission module: settles the mass fluxes of bioaerosol, it can be done with a complex parameterization integrating phenological models and meteorological factors or by a simple emission factor. (iii) Sources of emission module, specifically refers to forestry/agronomy maps or, in the case of herbs and fungi, to potential geographical areas of emission. Obtaining the highest possible resolution in these maps allows establishing greater reliability in the modelling. (iv) Atmospheric transport module, with its respective established output parameters. The review and subsequent analysis presented in this article, were performed on published electronic scientific articles from 1998 to 2016. Of a total of 101 models applied found in 64 articles, 33 % performed forward modelling (using 15 different models) and 67 % made backward modelling (with three different models). The 88 % of the cases were applied to pollen (13 taxa) and 12 % to fungal spores (3 taxa). Regarding the emission module, 22 % used parametrization (four different parameters) and 10 % emission factors. The most used transport model was HYSPLIT (59 %: 56 % backward and 3 % forward) following by SILAM 10 % (all forward). Main conclusions were that the models of long-range transport of pollen and fungal spores had high technical-scientific requirements to development and that the major limitations were the establishment of the flow and the source of the emission.


Allergens , Pollen , Meteorological Concepts , Reproducibility of Results , Seasons , Spores, Fungal
3.
J Fungi (Basel) ; 8(2)2022 Jan 27.
Article En | MEDLINE | ID: mdl-35205882

Fungal spores are universal atmospheric components associated to allergic reactions. Alternaria (Ascomycota) is considered the most allergenic spore taxa. Alt a 1 is the major allergen of Alternaria and is present also in other Pleosporales. In this study, standard Hirst-based sampling and analyzing methods for measuring spore daily concentrations of Alternaria, Curvularia, Drechslera-Helminthosporium, Epicoccum, Leptosphaeria, Pithomyces, Pleospora and Stemphylium (all included in the taxon Pleosporales) have been used as well as two high-volume samplers, Burkard Cyclone (2017) and MCV CAV-A/mb (2019-2020), and ELISA kits for measuring the allergen. The detection and quantification of Alt a 1 was only possible in the samples from the MCV sampler. Although Alt a 1 was better correlated with Alternaria spores than with Pleosporales spores, the three of them showed high correlations. It is shown that there is a high and significant correlation of Alt a 1 with temperature, a negative correlation with relative humidity and no correlation with precipitation. The aerobiological monitoring of these three elements ensures the best information for understanding the affectation to allergy sufferers, but, if this is not possible, as a minimum public health service aimed at the detection, treatment and prevention of allergies, the study of the airborne Alternaria spores should be ensured.

4.
Sci Total Environ ; 818: 151827, 2022 Apr 20.
Article En | MEDLINE | ID: mdl-34813812

Betula (birch) pollen is one of the most important causes of respiratory allergy in Northern and Central Europe. While birch trees are abundant in Central, Northern, and Eastern Europe, they are scarce in the Mediterranean territories, especially in the Iberian Peninsula (IP), where they grow only in the northern regions and as ornamental trees in urban areas. However, the airborne birch pollen patterns in Catalonia (Northeastern IP) show abrupt high concentrations in areas with usually low local influence. The intensity of the derived health problems can be increased by outbreaks due to long-range pollen transport. The present work evaluates the different potential contributions to Catalonia from the main source regions: Pyrenees, Cantabria, and the forests of France and Central Europe. To this end, we computed the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectories of air masses associated with the main Betula pollen peaks occurring simultaneously over different Catalan monitoring stations, and we studied their provenance over a 15-year period. The Vielha aerobiological station on the northern slopes of the Central Pyrenees was used to identify the dates of the pollen season in the Pyrenean region. In order to better understand the role of the Pyrenees, which is the nearest of the four birch forested regions, we classified the pollen peaks in the other Catalan stations into three groups based on the relationship between the peak and the pollen season in the Pyrenees. Our analysis of back-trajectory residence time, combined with the associated pollen concentration, reveals that two principal routes other than the Pyrenean forest sustain the northerly fluxes that enter Catalonia and carry significant concentrations of Betula pollen. This study has also allowed quantifying the differentiated contributions of the potential source regions. In addition, the Weather Research Forecast (WRF) mesoscale model has been used to study three specific episodes. Both models, HYSPLIT and WRF, complement each other and have allowed for better understanding of the main mechanisms governing the entry of birch pollen to the region.


Betula , Pollen , Allergens , Europe , Seasons , Weather
5.
Sci Total Environ ; 795: 148783, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34243002

The present work is the first of two reviews on applied modeling in the field of aerobiology. The aerobiological predictive models for pollen and fungal spores, usually defined as predictive statistical models, will, amongst other objectives, forecast airborne particles' concentration or dynamical behavior of the particles. These models can be classified into Observation Based Models (OBM), Phenological Based Models (PHM), or OTher Models (OTM). The aim of this review is to show, analyze and discuss the different predictive models used in pollen and spore aerobiological studies. The analysis was performed on published electronic scientific articles from 1998 to 2016 related to the type of model, the taxa and the modelled parameters. From a total of 503 studies, 55.5% used OBM (44.8% on pollen and 10.7% on fungal spores), 38.5% PHM (all on pollen) and 6% OTM (5.4% on pollen and 0.6% on fungal spores). OBM have been used with high frequency to forecast concentration. The most frequent model of OBM was linear regression (18.5% out of 503) on pollen and artificial neural networks (4.6%) on fungal spores. In the PHM, the principal use was to characterize the main pollen season (flowering season) based on the model of growth degree days. Finally, OTM have been used to estimate concentrations at unmonitored areas. Olea (14,5%) on pollen and Alternaria (4,8%) on fungal spores were the taxa most frequently modelled. Daily concentration was the most modelled parameter by OBM (25.2%) and season start day by PHM (35.6%). The PHM approaches include greater model diversity and use fewer independent variables than OBM. In addition, PHM show to be easier to apply than OBM; however, the wide range of criteria to define the parameters to use in PHM (e.g.: pollination start day) makes that each model is used with a lesser frequency than other models.


Alternaria , Pollen , Forecasting , Seasons , Spores, Fungal
6.
Sci Rep ; 11(1): 11357, 2021 05 31.
Article En | MEDLINE | ID: mdl-34059743

Monitoring of airborne pollen concentrations provides an important source of information for the globally increasing number of hay fever patients. Airborne pollen is traditionally counted under the microscope, but with the latest developments in image recognition methods, automating this process has become feasible. A challenge that persists, however, is that many pollen grains cannot be distinguished beyond the genus or family level using a microscope. Here, we assess the use of Convolutional Neural Networks (CNNs) to increase taxonomic accuracy for airborne pollen. As a case study we use the nettle family (Urticaceae), which contains two main genera (Urtica and Parietaria) common in European landscapes which pollen cannot be separated by trained specialists. While pollen from Urtica species has very low allergenic relevance, pollen from several species of Parietaria is severely allergenic. We collect pollen from both fresh as well as from herbarium specimens and use these without the often used acetolysis step to train the CNN model. The models show that unacetolyzed Urticaceae pollen grains can be distinguished with > 98% accuracy. We then apply our model on before unseen Urticaceae pollen collected from aerobiological samples and show that the genera can be confidently distinguished, despite the more challenging input images that are often overlain by debris. Our method can also be applied to other pollen families in the future and will thus help to make allergenic pollen monitoring more specific.


Allergens/immunology , Environmental Monitoring/methods , Neural Networks, Computer , Parietaria/immunology , Pollen/immunology , Allergens/analysis , Seasons
7.
Int J Biometeorol ; 63(12): 1541-1553, 2019 Dec.
Article En | MEDLINE | ID: mdl-31377867

Alternaria and Cladosporium are the most common airborne fungal spores responsible for health problems, as well as for crop pathologies. The study of their behavior in the air is a necessary step for establishing control and prevention measures. The aim of this paper is to develop a logistic regression model for predicting the daily concentrations of airborne Alternaria and Cladosporium fungal spores from meteorological variables. To perform the logistic regression analysis, the concentration levels are binarized using concentration thresholds. The fungal spore data have been obtained at eight aerobiological monitoring stations of the Aerobiological Network of Catalonia (NE Spain). The meteorological data used were the maximum and minimum daily temperatures and daily rainfall provided by the meteorological services. The relationship between the meteorological variables and the fungal spore levels has been modeled by means of logistic regression equations, using data from the period 1995-2012. Values from years 2013-2014 were used for validation. In the case of Alternaria, three equations for predicting the presence and the exceedance of the thresholds 10 and 30 spores/m3 have been established. For Cladosporium, four equations for the thresholds 200, 500, 1000, and 1500 spores/m3 have been established. The temperature and cumulative rainfall in the last 3 days showed a positive correlation with airborne fungal spore levels, while the rain on the same day had a negative correlation. Sensitivity and specificity were calculated to measure the predictive power of the model, showing a reasonable percentage of correct predictions (ranging from 48 to 99%). The simple equations proposed allow us to forecast the levels of fungal spores that will be in the air the next day, using only the maximum and minimum temperatures and rainfall values provided by weather forecasting services.


Alternaria , Cladosporium , Air Microbiology , Logistic Models , Seasons , Spain , Spores, Fungal
8.
Environ Res ; 176: 108514, 2019 09.
Article En | MEDLINE | ID: mdl-31202045

BACKGROUND: Parietaria and Urtica are the genera from the Urticaceae family more frequent in Mediterranean and Atlantic areas. Moreover, both genera share pollination periods, and their pollen (of the main species) is so similar that there is no aerobiological evidence of the proportion of each of them in the airborne pollen identification, except in the case of U. membranacea. However, Parietaria is one of the most important causes of pollinosis and Urtica is not. Our aim is determine if airborne Urticaceae pollen concentrations show the aerodynamics of the two major allergens of Parietaria (Par j 1 and Par j 2) as well as the allergen distribution in the different-sized particles. METHODS: The air was sampled during the pollination period of Urticaceae using Hirst Volumetric Sampler and Andersen Cascade Impactor in two cities of Southern Spain (Córdoba and Granada). The samples were analysed by the methodology proposed by the Spanish Aerobiology Network (REA) and the minimum requirements of the European Aeroallergen Society (EAS) for pollen, and by ELISA immunoassay for allergens. RESULTS: The patterns of airborne pollen and Par j 1-Par j 2 were present in the air during the studied period, although with irregular oscillations. Urticaceae pollen and Par j 1-Par j 2 allergens located in PM2.5 showed positive and significant correlation during the period with maximum concentrations (March to April). CONCLUSION: Parietaria aeroallergens show similar pattern of Urticaceae airborne pollen. Urticaceae pollen calendar is as a good tool for allergy prevention. On the other hand, important concentrations of Par j 1 and Par j 2 were located in the breathable fraction (PM2.5), which could explain the asthmatic symptoms in the allergic population to Parietaria.


Allergens , Inhalation Exposure , Parietaria , Allergens/analysis , Humans , Parietaria/chemistry , Plant Proteins , Pollen , Prohibitins , Spain
9.
Sci Total Environ ; 653: 938-946, 2019 Feb 25.
Article En | MEDLINE | ID: mdl-30759619

Airborne fungal spores are prevalent components of bioaerosols with a large impact on ecology, economy and health. Their major socioeconomic effects could be reduced by accurate and timely prediction of airborne spore concentrations. The main aim of this study was to create and evaluate models of Alternaria and Cladosporium spore concentrations based on data on a continental scale. Additional goals included assessment of the level of generalization of the models spatially and description of the main meteorological factors influencing fungal spore concentrations. Aerobiological monitoring was carried out at 18 sites in six countries across Europe over 3 to 21 years depending on site. Quantile random forest modelling was used to predict spore concentrations. Generalization of the Alternaria and Cladosporium models was tested using (i) one model for all the sites, (ii) models for groups of sites, and (iii) models for individual sites. The study revealed the possibility of reliable prediction of fungal spore levels using gridded meteorological data. The classification models also showed the capacity for providing larger scale predictions of fungal spore concentrations. Regression models were distinctly less accurate than classification models due to several factors, including measurement errors and distinct day-to-day changes of concentrations. Temperature and vapour pressure proved to be the most important variables in the regression and classification models of Alternaria and Cladosporium spore concentrations. Accurate and operational daily-scale predictive models of bioaerosol abundances contribute to the assessment and evaluation of relevant exposure and consequently more timely and efficient management of phytopathogenic and of human allergic diseases.


Air Microbiology/standards , Air Pollutants/analysis , Alternaria/physiology , Cladosporium/physiology , Meteorological Concepts , Spores, Fungal/isolation & purification , Air Pollutants/immunology , Air Pollution/analysis , Allergens/analysis , Allergens/immunology , Alternaria/immunology , Cladosporium/immunology , Environmental Monitoring/statistics & numerical data , Europe , Forecasting , Models, Statistical , Spores, Fungal/immunology
10.
Sci Total Environ ; 598: 109-120, 2017 Nov 15.
Article En | MEDLINE | ID: mdl-28437767

Building-integrated rooftop greenhouse (i-RTG) agriculture has intensified in recent years, due to the growing interest in the development of new agricultural spaces and in the promotion of food self-sufficiency in urban areas. This paper provides a first assessment of the indoor dynamics of bioaerosols in an i-RTG, with the aim of evaluating biological air quality in a tomato greenhouse near Barcelona. It evaluates the greenhouse workers' exposure to airborne pollen and fungal spores in order to prevent allergy problems associated with occupational tasks. Moreover, it evaluates whether the quality of the hot air accumulated in the i-RTG is adequate for recirculation to heat the building. Daily airborne pollen and fungal spore concentrations were measured simultaneously in the indoor and outdoor environments during the warm season. A total of 4,924pollengrains/m3 were observed in the i-RTG, with a peak of 334pollengrains/m3day, and a total of 295,038 fungal spores were observed, reaching a maximum concentration of 26,185spores/m3day. In general, the results showed that the most important source of pollen grains and fungal spores observed indoors was the outdoor environment. However, Solanaceae pollen and several fungal spore taxa, such as the allergenic Aspergillus/Penicillium, largely originated inside the greenhouses or were able to colonize the indoor environment under favourable growing conditions. Specific meteorological conditions and agricultural management tasks are related to the highest observed indoor concentrations of pollen grains and fungal spores. Therefore, preventive measures have been suggested in order to reduce or control the levels of bioaerosols indoors (to install a system to interrupt the recirculation of air to the building during critical periods or to implement appropriate air filters in ventilation air ducts). This first evaluation could help in making decisions to prevent the development of fungal diseases, specifically those due to Oidium and Torula.


Agriculture , Air Microbiology , Air Pollution, Indoor/analysis , Pollen , Spores, Fungal/isolation & purification , Environment, Controlled , Fungi , Spain
11.
Environ Res ; 155: 219-227, 2017 05.
Article En | MEDLINE | ID: mdl-28231549

Urban parks play a key role in the provision of ecosystem services, actively participating in improving the quality of life and welfare of local residents. This paper reports on the application of an index designed to quantify the allergenicity of urban parks in a number of Spanish cities. The index, which records biological and biometric parameters for the tree species growing there, classifies parks in terms of the risk they pose for allergy sufferers, graded as null, low, moderate or high. In this initial phase, the index was applied to 26 green areas in 24 Spanish cities; green areas varied in type (urban park, historical or modern garden, boulevard, square or urban forest), size 1-100 ha), geographical location, species richness, number of trees and tree density (number of trees / ha.). The data obtained were used to calculate the percentage of allergenic species in each park, which varied between 17-67%; density ranged from 100 to 300 trees/ha. The index values recorded ranged from a minimum of .07 to a maximum of .87; a significant correlation was found between index value and both number of trees and tree density. Taking an index value of .30 as the threshold considered sufficient to trigger allergy symptoms in the sensitive population, 12 of the parks studied may be regarded as unhealthy at any time of the year. Corrective measures to mitigate the impact of pollen emissions include the implementation of nature-based solutions at various levels: planning and design, handling and management, and strengthening of urban green-infrastructure elements. The index proved to be a useful tool for environmental analysis, and complies with the principles of portability and scalability central to current and horizon scientific research.


Allergens/analysis , Environmental Pollutants/analysis , Trees , Biodiversity , Cities , Environmental Monitoring , Humans , Parks, Recreational , Public Health , Spain
12.
Sci Total Environ ; 575: 1183-1196, 2017 Jan 01.
Article En | MEDLINE | ID: mdl-27707665

This work provides a first assessment of the possible barrier effect of the Pyrenees on the atmospheric transport of airborne pollen from Europe to the North of the Iberian Peninsula. Aerobiological data recorded in three Spanish stations located at the eastern, central and western base of the Pyrenees in the period 2004-2014 have been used to identify the possible long range transport episodes of Betula pollen. The atmospheric transport routes and the origin regions have been established by means of trajectory analysis and a source receptor model. Betula pollen outbreaks were associated with the meteorological scenario characterized by the presence of a high-pressure system overm over Morocco and Southern Iberian Peninsula. France and Central Europe have been identified as the probable source areas of Betula pollen that arrives to Northern Spain. However, the specific source areas are mainly determined by the particular prevailing atmospheric circulation of each location. Finally, the Weather Research and Forecasting model highlighted the effect of the orography on the atmospheric transport patterns, showing paths through the western and easternmost lowlands for Vitoria-Gasteiz and Bellaterra respectively, and the direct impact of air flows over Vielha through the Garona valley.


Betula , Pollen , Wind , Allergens , Atmosphere , Europe , France , Models, Theoretical , Morocco , Seasons , Spain
13.
J Environ Qual ; 45(1): 244-52, 2016 Jan.
Article En | MEDLINE | ID: mdl-26828180

Pollen released by urban flora-a major contributor to airborne allergen content during the pollen season-has a considerable adverse impact on human health. Using aerobiological techniques to sample and characterize airborne biological particulate matter (BPM), we can identify the main species contributing to the pollen spectrum and chart variations in counts and overall pollen dynamics throughout the year. However, given the exponential increase in the number of pollen allergy sufferers in built-up areas, new strategies are required to improve the biological quality of urban air. This paper reports on a novel characterization of the potential allergenicity of the tree species most commonly used as ornamentals in Mediterranean cities. Values were assigned to each species based on a number of intrinsic features including pollination strategy, pollen season duration, and allergenic capacity as reported in the specialist literature. Findings were used to generate a database in which groups of conifers, broadleaves, and palm trees were assigned a value of between 0 and 36, enabling their allergenicity to be rated as nil, low, moderate, high, or very high. The case study presented here focuses on the city of Granada in southern Spain. The major airborne-pollen-producing species were identified and the allergenicity of species growing in urban green zones was estimated. Corrective measures are proposed to prevent high allergen levels and thus improve biological air quality.


Air Pollutants/analysis , Allergens/analysis , Cities , Pollen , Air Pollution , Humans , Seasons , Spain
14.
J Immunol ; 195(2): 445-9, 2015 Jul 15.
Article En | MEDLINE | ID: mdl-26041541

Olive (Olea europaea) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients' IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (Betula verrucosa), pine (Pinus sylvestris), and ryegrass (Lolium perenne). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction.


Basophils/immunology , Hypersensitivity/immunology , Pollen/immunology , Animals , Antigens, Plant/isolation & purification , Antigens, Plant/pharmacology , Basophil Degranulation Test , Basophils/drug effects , Basophils/pathology , Betula/chemistry , Betula/immunology , Case-Control Studies , Germination , Humans , Hypersensitivity/blood , Hypersensitivity/pathology , Immune Sera/chemistry , Immunoglobulin E/blood , Lolium/chemistry , Lolium/immunology , Mice , Olea/chemistry , Olea/immunology , Pinus/chemistry , Pinus/immunology , Plant Extracts/chemistry , Plant Extracts/immunology , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Pollen/chemistry , Primary Cell Culture
15.
Int J Biometeorol ; 58(3): 371-82, 2014 Apr.
Article En | MEDLINE | ID: mdl-23371290

Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.


Air Pollution/statistics & numerical data , Allergens/analysis , Atmosphere/chemistry , Climate , Environmental Monitoring/methods , Models, Statistical , Pollen/chemistry , Air Pollution/analysis , Atmosphere/analysis , Computer Simulation , Data Interpretation, Statistical , Environmental Monitoring/statistics & numerical data , Spain , Spatio-Temporal Analysis
16.
PLoS One ; 7(4): e34076, 2012.
Article En | MEDLINE | ID: mdl-22514618

A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and prevalence of respiratory diseases, such as allergic rhinitis (common hay fever) and asthma. Such phenomena may be related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic pollen. Experimental enhancements of carbon dioxide (CO[Formula: see text]) have demonstrated changes in pollen amount and allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric CO[Formula: see text] levels may be influential.


Pollen , Allergens/analysis , Climate Change , Europe , Geography
17.
Chemosphere ; 72(3): 465-72, 2008 Jun.
Article En | MEDLINE | ID: mdl-18355891

The production of Mg-rich carbonates by Idiomarina bacteria at modern seawater salinities has been investigated. With this objective, four strains: Idiomarina abyssalis (strain ATCC BAA-312), Idiomarina baltica (strain DSM 15154), Idiomarina loihiensis (strains DSM 15497 and MAH1) were used. The strain I. loihiensis MAH1 is a new isolate, identified in the scope of this work. The four moderately halophilic strains precipitated struvite (NH4MgPO4 x 6H2O) crystals that appear encased by small Ca-Mg kutnahorite [CaMg(CO3)2] spheres and dumbbells, which are also regularly distributed in the bacterial colonies. The proportion of Ca-Mg kutnahorite produced by the bacteria assayed ranged from 50% to 20%, and I. abyssalis also produced monohydrocalcite. All precipitated minerals appeared to be related to the bacterial metabolism and, consequently, can be considered biologically induced. Amino acid metabolism resulted in a release of ammonia and CO2 that increase the pH and CO(3)(2-) concentration of the culture medium, creating an alkaline environment that favoured carbonate and struvite precipitation. This precipitation may be also related to heterogeneous nucleation on negatively charged points of biological structures. Because the nature of the organic matrix determines which ion is preferentially adsorbed and, consequently, which mineral phase is formed, the uniquely high content in odd-iso-branched fatty acids of the Idiomarina suggests that their particular membrane characteristics could induce Ca-Mg kutnahorite production. The Ca-Mg kutnahorite, a mineral with a dolomite-ordered structure, production at seawater salinities is noticeable. To date, such precipitation in laboratory cultures, has only been described in hypersaline conditions. It has also been the first time that biomineralization processes have been related to Idiomarina bacteria.


Alteromonadaceae/metabolism , Magnesium Compounds/metabolism , Phosphates/metabolism , Seawater/microbiology , Alteromonadaceae/classification , Alteromonadaceae/ultrastructure , Ammonia/metabolism , Carbon Dioxide/metabolism , Magnesium Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phosphates/chemistry , Phylogeny , Protons , RNA, Ribosomal, 16S/genetics , Salinity , Seawater/chemistry , Struvite
18.
Appl Environ Microbiol ; 69(9): 5722-5, 2003 Sep.
Article En | MEDLINE | ID: mdl-12957970

Bacterial precipitation of barite (BaSO(4)) under laboratory conditions is reported for the first time. The bacterium Myxococcus xanthus was cultivated in a solid medium with a diluted solution of barium chloride. Crystallization occurred as a result of the presence of live bacteria and the bacterial metabolic activity. A phosphorous-rich amorphous phase preceded the more crystalline barite formation. These experiments may indicate the involvement of bacteria in the barium biogeochemical cycle, which is closely related to the carbon cycle.


Barium Sulfate/pharmacology , Myxococcus xanthus/isolation & purification , Barium Sulfate/chemistry , Microscopy, Electron, Scanning , Myxococcus xanthus/drug effects , Myxococcus xanthus/growth & development
...