Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Toxicology ; 505: 153809, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648961

The present work, using chromaffin cells of bovine adrenal medullae (BCCs), aims to describe what type of ionic current alterations induced by lead (Pb2+) underlies its effects reported on synaptic transmission. We observed that the acute application of Pb2+ lead to a drastic depression of neurotransmitters release in a concentration-dependent manner when the cells were stimulated with both K+ or acetylcholine, with an IC50 of 119,57 µM and of 5,19 µM, respectively. This effect was fully recovered after washout. Pb2+ also blocked calcium channels of BCCs in a time- and concentration-dependent manner with an IC50 of 6,87 µM. This blockade was partially reversed upon washout. This compound inhibited the calcium current at all test potentials and shows a shift of the I-V curve to more negative values of about 8 mV. The sodium current was not blocked by acute application of high Pb2+ concentrations. Voltage-dependent potassium current was also shortly affected by high Pb2+. Nevertheless, the calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 24,49 µM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to Ca2+-activated K+-channels (BK) instead a direct linking to these channels. Under current-clamp conditions, BCCs exhibit a resting potential of -52.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of K+ channels. In spite of the effect on ionic channels exerted by Pb2+, we found that Pb2+ didn't alter cellular excitability, no modification of the membrane potential, and no effect on action potential firing. Taken together, these results point to a neurotoxic action evoked by Pb2+ that is associated with changes in neurotransmitter release by blocking the ionic currents responsible for the calcium influx.


Calcium Channels , Chromaffin Cells , Lead , Neurotransmitter Agents , Animals , Chromaffin Cells/drug effects , Chromaffin Cells/metabolism , Lead/toxicity , Cattle , Calcium Channels/metabolism , Calcium Channels/drug effects , Neurotransmitter Agents/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Calcium Channel Blockers/pharmacology , Synaptic Transmission/drug effects , Calcium/metabolism , Acetylcholine/metabolism
2.
J Neurochem ; 165(2): 162-176, 2023 04.
Article En | MEDLINE | ID: mdl-36800503

Aluminum (Al3+ ) has long been related to neurotoxicity and neurological diseases. This study aims to describe the specific actions of this metal on cellular excitability and neurotransmitter release in primary culture of bovine chromaffin cells. Using voltage-clamp and current-clamp recordings with the whole-cell configuration of the patch clamp technique, online measurement of catecholamine release, and measurements of [Ca2+ ]c with Fluo-4-AM, we have observed that Al3+ reduced intracellular calcium concentrations around 25% and decreased catecholamine secretion in a dose-dependent manner, with an IC50 of 89.1 µM. Al3+ blocked calcium currents in a time- and concentration-dependent manner with an IC50 of 560 µM. This blockade was irreversible since it did not recover after washout. Moreover, Al3+ produced a bigger blockade on N-, P-, and Q-type calcium channels subtypes (69.5%) than on L-type channels subtypes (50.5%). Sodium currents were also inhibited by Al3+ in a time- and concentration-dependent manner, 24.3% blockade at the closest concentration to the IC50 (399 µM). This inhibition was reversible. Voltage-dependent potassium currents were low affected by Al3+ . Nonetheless, calcium/voltage-dependent potassium currents were inhibited in a concentration-dependent manner, with an IC50 of 447 µM. This inhibition was related to the depression of calcium influx through voltage-dependent calcium channels subtypes coupled to BK channels. In summary, the blockade of these ionic conductance altered cellular excitability that reduced the action potentials firing and so, the neurotransmitter release and the synaptic transmission. These findings prove that aluminum has neurotoxic properties because it alters neuronal excitability by inhibiting the sodium currents responsible for the generation and propagation of impulse nerve, the potassium current responsible for the termination of action potentials, and the calcium current responsible for the neurotransmitters release.


Calcium , Chromaffin Cells , Animals , Cattle , Calcium/metabolism , Aluminum/toxicity , Large-Conductance Calcium-Activated Potassium Channels , Potassium/pharmacology , Sodium , Chromaffin Cells/metabolism , Action Potentials/physiology , Catecholamines
3.
Methods Mol Biol ; 2565: 105-112, 2023.
Article En | MEDLINE | ID: mdl-36205890

Amperometry is an electrochemical method based on the oxidation or reduction of molecules. Many secretion products, including catecholamines, contain in their molecule chemical groups with the ability to yield (oxidize) or capture (reduce) electrons upon its exposure to an electrical field. In order to measure the secretion of catecholamines, they are oxidized at +650 mV with a carbon electrode, releasing every molecule of catecholamine that is oxidized two electrons (e-) that are recorded as an electrical current. Amperometry is an easy-to-use and noninvasive technique for cells (unlike patch-clamp techniques for measuring membrane capacitance) and has been widely used to monitor online catecholamine release from perifused bovine chromaffin cell populations.


Chromaffin Cells , Animals , Carbon , Catecholamines , Cattle , Electrodes , Patch-Clamp Techniques
4.
Biology (Basel) ; 11(4)2022 Mar 26.
Article En | MEDLINE | ID: mdl-35453710

Alzheimer's disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to a noradrenergic overactivation. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg AD model mice to characterize potential alterations in the autocrine-paracrine modulation of voltage-dependent calcium channels (VDCCs), which in turn serve to regulate the release of catecholamines. We used mice at the presymptomatic stage (2 months) and mice over 12 months of age, when AD-related cognitive impairment was fully established. We found that the modulation of inward currents through VDCCs induced by extracellular ATP was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched WT mice. This enhanced modulation leads to increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients.

5.
J Med Chem ; 64(4): 2272-2290, 2021 02 25.
Article En | MEDLINE | ID: mdl-33560845

The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1ß release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizations.


Anti-Inflammatory Agents/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Purines/pharmacology , Receptors, Purinergic P2X7/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphatases/metabolism , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , HEK293 Cells , Humans , Interleukin-1beta/metabolism , Macrophages, Peritoneal/drug effects , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Oocytes/drug effects , Purinergic P2X Receptor Antagonists/chemical synthesis , Purinergic P2X Receptor Antagonists/metabolism , Purines/chemical synthesis , Purines/metabolism , Xenopus laevis
6.
Nat Prod Res ; 35(22): 4870-4875, 2021 Nov.
Article En | MEDLINE | ID: mdl-32174171

We investigated the role of triterpene barbinervic acid from Eugenia punicifolia dichloromethane extract in vasopressor responses. Renal arteries were cannulated and perfused with Krebs-Hepes solution. Changes in aorta isometric tension were recorded and transferred to a data acquisition system. Cumulative curves were constructed based on the maximum effect of agonists. Barbinervic acid reduced the renal tonus induced by NA in a NO-dependent manner (IC50 = 30 µM). Triterpene (70 µM) also induced rapid and transient relaxation in aorta that had been precontracted with K+ (53.2 ± 0.05%) or phenylephrine (36.7 ± 0.05%). In silico data revealed two possible active sites for interactions between barbinervic acid and NO synthase. Barbinervic acid showed a vasodilator effect and could potentially be used as a template for developing new molecules for the treatment of cardiovascular disease.


Eugenia , Triterpenes , Computer Simulation , Plant Extracts/pharmacology , Plant Leaves , Triterpenes/pharmacology
7.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article En | MEDLINE | ID: mdl-35008868

Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.


Calcium , Catecholamines , Chromaffin Cells , Exocytosis , Mitochondria , Animals , Cattle , Calcium/metabolism , Calcium Signaling , Catecholamines/metabolism , Cells, Cultured , Chromaffin Cells/cytology , Chromaffin Cells/drug effects , Exocytosis/drug effects , Mitochondria/drug effects , Primary Cell Culture
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Article En | MEDLINE | ID: mdl-33171955

We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.


Adrenal Medulla/physiology , Hyperalgesia/physiopathology , Neuralgia/metabolism , Adrenal Glands/drug effects , Adrenal Medulla/metabolism , Animals , Catecholamines/pharmacology , Chromaffin Cells/drug effects , Disease Models, Animal , Epinephrine/metabolism , Hyperalgesia/metabolism , Male , Neuralgia/physiopathology , Norepinephrine/metabolism , Phenylethanolamine N-Methyltransferase/antagonists & inhibitors , Phenylethanolamine N-Methyltransferase/metabolism , Rats , Rats, Sprague-Dawley
9.
Med Res Rev ; 40(6): 2427-2465, 2020 11.
Article En | MEDLINE | ID: mdl-32677086

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.


Alzheimer Disease , Neurodegenerative Diseases , Pharmaceutical Preparations , Animals , Humans , Mice , Neurodegenerative Diseases/drug therapy , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7
10.
J Pharmacol Exp Ther ; 371(1): 219-230, 2019 10.
Article En | MEDLINE | ID: mdl-31209099

Vesicular monoamine transporter-2 is expressed in the presynaptic secretory vesicles membrane in the brain. Its blockade by tetrabenazine (TBZ) causes depletion of dopamine at striatal basal ganglia; this is the mechanism underlying its long-standing use in the treatment of Huntington's disease. In the frame of a project aimed at investigating the kinetics of exocytosis from vesicles with partial emptying of their neurotransmitter, we unexpectedly found that TBZ facilitates exocytosis; thus, we decided to characterize such effect. We used bovine chromaffin cells (BCCs) challenged with repeated pulses of high K+ Upon repeated K+ pulsing, the exocytotic catecholamine release responses were gradually decaying. However, when cells were exposed to TBZ, responses were mildly augmented and decay rate delayed. Facilitation of exocytosis was not due to Ca2+ entry blockade through voltage-activated calcium channels (VACCs) because, in fact, TBZ mildly blocked the whole-cell Ca2+ current. However, TBZ mimicked the facilitatory effects of exocytosis elicited by BayK8644 (L-subtype VACC agonist), an effect blocked by nifedipine (VACC antagonist). On the basis that TBZ augmented the secretory responses to caffeine (but not those of histamine), we monitored its effects on cytosolic Ca2+ elevations ([Ca2+]c) triggered by caffeine or histamine. While the responses to caffeine were augmented twice by TBZ, those of histamine were unaffected; the same happened in rat cortical neurons. Hence, we hypothesize that TBZ facilitates exocytosis by increasing Ca2+ release through the endoplasmic reticulum ryanodine receptor channel (RyR). Confirming this hypothesis are docking results, showing an interaction of TBZ with RyRs. This is consonant with the existence of a healthy Ca2+-induced-Ca2+-release mechanism in BCCs. SIGNIFICANCE STATEMENT: A novel mechanism of action for tetrabenazine (TBZ), a drug used in the therapy of Huntington's disease (HD), is described here. Such mechanism consists of facilitation by combining TBZ with the ryanodine receptor of the endoplasmic reticulum, thereby increasing Ca2+-induced Ca2+ release. This novel mechanism should be taken into account when considering the efficacy and/or safety of TBZ in the treatment of chorea associated with HD and other disorders. Additionally, it could be of interest in the development of novel medicines to treat these pathological conditions.


Adrenergic Uptake Inhibitors/pharmacology , Calcium Signaling , Chromaffin Cells/drug effects , Exocytosis , Ryanodine Receptor Calcium Release Channel/metabolism , Tetrabenazine/pharmacology , Animals , Binding Sites , Calcium Channels, N-Type/metabolism , Cattle , Cells, Cultured , Chromaffin Cells/metabolism , Protein Binding , Ryanodine Receptor Calcium Release Channel/chemistry
11.
Neurotoxicology ; 70: 99-111, 2019 01.
Article En | MEDLINE | ID: mdl-30448301

In the frame of a repositioning programme with cholinergic medicines in clinical use searching for neuroprotective properties, we surprisingly found that spasmolytic antimuscarinics otilonium and pinaverium exhibited neurotoxic effects in neuronal cultures. We decided to characterize such unexpected action in primary cultures of rat embryo cortical neurons. Neurotoxicity was time- and concentration-dependent, exhibiting approximate EC50 values of 5 µM for both drugs. Seven antimuscarinic drugs endowed with a quaternary ammonium, and another 10 drugs with different cholinergic activities, carrying in their molecule a ternary ammonium did not exhibit neurotoxicity. Both drugs caused a concentration-dependent blockade of whole-cell inward currents through voltage-activated calcium channels (VACCs). Consistent with this, they also blocked the K+-elicited [Ca2+]c transients. Neither antioxidant catalase, glutathione, n-acetylcysteine, nor melatonin protected against neurotoxicity of otilonium or pinaverium. However cyclosporine A, a blocker of the mitochondrial permeability transition pore, prevented the neurotoxic effects of otilonium and pinaverium monitored as the fraction of cells undergoing apoptosis. Furthermore, the caspase-9 and caspase-3 inhibitor Ac-LEHD-CHO mitigated the apoptotic neuronal death of both drugs by around 50%. Data are compatible with the hypothesis that otilonium and pinaverium elicit neuronal death by activating the intrinsic mitochondrial-mediated signaling pathway of apoptosis. This may have its origin in the mitigation of Ca2+ entry and the uncoupling of the Ca2+-dependent generation of mitochondrial bioenergetics, thus causing the opening of the mitochondrial mPTP to elicit apoptotic neuronal death.


Apoptosis/drug effects , Cerebral Cortex/drug effects , Mitochondria/drug effects , Morpholines/toxicity , Neurons/drug effects , Quaternary Ammonium Compounds/toxicity , Animals , Apoptosis/physiology , Cattle , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cerebral Cortex/pathology , Cerebral Cortex/physiology , Dose-Response Relationship, Drug , Embryo, Mammalian , Female , Humans , Mitochondria/pathology , Mitochondria/physiology , Muscarinic Antagonists , Neurons/pathology , Neurons/physiology , Pregnancy , Rats , Rats, Sprague-Dawley
12.
Pflugers Arch ; 470(10): 1459-1471, 2018 10.
Article En | MEDLINE | ID: mdl-29926228

Three divalent cations can elicit secretory responses in most neuroendocrine cells, including chromaffin cells. The extent to which secretion is elicited by the cations in intact depolarized cells was Ba2+ > Sr2+ ≥ Ca2+, contrasting with that elicited by these cations in permeabilized cells (Ca2+ > Sr2+ > Ba2+). Current-clamp recordings show that extracellular Sr2+ and Ba2+ cause membrane depolarization and action potentials, which are not blocked by Cd2+ but that can be mimicked by tetra-ethyl-ammonium. When applied intracellularly, only Ba2+ provokes action potentials. Voltage-clamp monitoring of Ca2+-activated K+ channels (KCa) shows that Ba2+ reduces outward currents, which were enhanced by Sr2+. Extracellular Ba2+ increases cytosolic Ca2+ concentrations in Fura-2-loaded intact cells, and it induces long-lasting catecholamine release. Conversely, amperometric recordings of permeabilized cells show that Ca2+ promotes the longest lasting secretion, as Ba2+ only provokes secretion while it is present and Sr2+ induces intermediate-lasting secretion. Intracellular Ba2+ dialysis provokes exocytosis at concentrations 100-fold higher than those of Ca2+, whereas Sr2+ exhibits an intermediate sensitivity. These results are compatible with the following sequence of events: Ba2+ blocks KCa channels from both the outside and inside of the cell, causing membrane depolarization that, in turn, opens voltage-sensitive Ca2+ channels and favors the entry of Ca2+ and Ba2+. Although Ca2+ is less permeable through its own channels, it is more efficient in triggering exocytosis. Strontium possesses both an intermediate permeability and an intermediate ability to induce secretion.


Barium/pharmacology , Calcium/pharmacology , Chromaffin Cells/metabolism , Exocytosis , Strontium/pharmacology , Action Potentials , Animals , Calcium/metabolism , Calcium Channels/metabolism , Catecholamines/metabolism , Cattle , Cells, Cultured , Chromaffin Cells/drug effects , Chromaffin Cells/physiology , Potassium Channels, Calcium-Activated/metabolism
13.
Pflugers Arch ; 470(8): 1255-1270, 2018 08.
Article En | MEDLINE | ID: mdl-29721607

Gasotransmitter hydrogen sulphide (H2S) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of H2S) and GYY4137 (GYY, slow donor of H2S) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K+-depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion. This was not due to an augmentation of Ca2+ entry through voltage-activated Ca2+ channels (VACCs) because, in fact, NaHS and GYY caused a mild inhibition of whole-cell Ca2+ currents. Rather, the facilitation of exocytosis seemed to be associated to an augmented basal [Ca2+]c and the K+-elicited [Ca2+]c transients; such effects of H2S donors are aborted by cyclopiazonic acid (CPA), that causes endoplasmic reticulum (ER) Ca2+ depletion through sarcoendoplasmic reticulum Ca2+ ATPase inhibition and by protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), that impedes the ability of mitochondria to sequester cytosolic Ca2+ during cell depolarization. Inasmuch as CPA and FCCP reversed the facilitation of secretion triggered by K+ in the presence of NaHS and GYY, is seems that such facilitation is tightly coupled to Ca2+ handling by the ER and mitochondria. On the basis of these results, we propose that H2S regulates catecholamine secretory responses triggered by K+ in BCCs by (i) mobilisation of ER Ca2+ and (ii) interference with mitochondrial Ca2+ circulation. In so doing, the clearance of the [Ca2+]c transient will be delayed and the Ca2+-dependent trafficking of secretory vesicles will be enhanced to overfill the secretory machinery with new vesicles to enhance exocytosis.


Calcium/metabolism , Chromaffin Cells/drug effects , Exocytosis/drug effects , Hydrogen Sulfide/pharmacology , Animals , Calcium Channels/metabolism , Calcium Signaling/drug effects , Catecholamines/metabolism , Cattle , Cells, Cultured , Chromaffin Cells/metabolism , Cytosol/drug effects , Cytosol/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Morpholines/pharmacology , Organothiophosphorus Compounds/pharmacology , Potassium/metabolism
14.
Pflugers Arch ; 468(10): 1779-92, 2016 10.
Article En | MEDLINE | ID: mdl-27558258

It is known that the sustained depolarisation of adrenal medullary bovine chromaffin cells (BCCs) with high K(+) concentrations produces an initial sharp catecholamine release that subsequently fades off in spite depolarisation persists. Here, we have recreated a sustained depolarisation condition of BCCs by treating them with the Na(+)/K(+) ATPase blocker ouabain; in doing so, we searched experimental conditions that permitted the development of a sustained long-term catecholamine release response that could be relevant during prolonged stress. BCCs were perifused with nominal 0Ca(2+) solution, and secretion responses were elicited by intermittent application of short 2Ca(2+) pulses (Krebs-HEPES containing 2 mM Ca(2+)). These pulses elicited a biphasic secretory pattern with an initial 30-min period with secretory responses of increasing amplitude and a second 30-min period with steady-state, non-inactivating responses. The initial phase was not due to gradual depolarisation neither to gradual increases of the cytosolic calcium transients ([Ca(2+)]c) elicited by 2Ca(2+) pulses in BBCs exposed to ouabain; both parameters increased soon after ouabain addition. Νifedipine blocked these responses, and FPL64176 potentiated them, suggesting that they were triggered by Ca(2+) entry through non-inactivating L-type calcium channels. This was corroborated by nifedipine-evoked blockade of the L-type Ca(2+) channel current and the [Ca(2+)]c transients elicited by 2Ca(2+) pulses. Furthermore, the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) blocker SEA0400 caused a mild inhibition followed by a large rebound increase of the steady-state secretory responses. We conclude that these two phases of secretion are mostly contributed by Ca(2+) entry through L calcium channels, with a minor contribution of Ca(2+) entry through the reverse mode of the NCX.


Calcium Channels, L-Type/metabolism , Calcium Signaling , Chromaffin Cells/metabolism , Enzyme Inhibitors/pharmacology , Ouabain/pharmacology , Aniline Compounds/pharmacology , Animals , Catecholamines/metabolism , Cattle , Cells, Cultured , Chromaffin Cells/drug effects , Phenyl Ethers/pharmacology
15.
J Mass Spectrom ; 51(8): 651-664, 2016 Aug.
Article En | MEDLINE | ID: mdl-28239974

The primary functions of adrenal medullary chromaffin cells are the synthesis and storage in their chromaffin vesicles of the catecholamines noradrenaline (NA) and adrenaline (AD), and their subsequent release into the bloodstream by Ca2+ -dependent exocytosis under conditions of fear or stress (fight or flight response). Several monoamines, nucleotides and opiates, such as leucine-enkephalin (LENK) and methionine-enkephalin (MENK), are also co-stored and co-released with the catecholamines. However, other neurotransmitters have not been studied in depth. Here, we present a novel high-resolution liquid chromatography-tandem mass spectrometry approach for the simultaneous monitoring of 14 compounds stored and released in bovine chromaffin cells (BCCs). We validated the analytical method according to the recommendations of the EMA and FDA by testing matrix effect, selectivity, sensitivity, precision, accuracy, stability and carry-over. After testing on six batches of BCCs from different cultures, the method enabled simultaneous quantitative determination of monoamines (AD, NA, dopamine, serotonin, 5-hydroxyindoleacetic acid, histamine and metanephrine), amino acids (L-glutamic acid, γ-aminobutyric acid), nucleotides (adenosine 5'-diphosphate, adenosine 5'-monophosphate, cyclic adenosine 5'-monophosphate) and neuropeptides (LENK and MENK) in the intracellular content, basal secretion and acetylcholine induced secretion of BBCs. The high-resolution approach used here enabled us to determine the levels of 14 compounds in the same BCC batch in only 16 min. This novel approach will make it possible to study the regulatory mechanisms of Ca2+ signaling, exocytosis and endocytosis using different neurotrophic factors and/or secretagogues as stimuli in primary BCC cultures. Our method is actually being applied to human plasma samples of different therapeutic areas where sympathoadrenal axis is involved in stress situations such as Alzheimer's disease, migraine or cirrhosis, to improve diagnosis and clinical practice. Copyright © 2016 John Wiley & Sons, Ltd.


Amino Acids/analysis , Catecholamines/analysis , Chromaffin Cells/metabolism , Neuropeptides/analysis , Nucleotides/analysis , Amino Acids/chemistry , Animals , Calibration , Catecholamines/chemistry , Cattle , Chromatography, Liquid/methods , Limit of Detection , Linear Models , Neuropeptides/chemistry , Neurosecretion , Nucleotides/chemistry , Reproducibility of Results , Tandem Mass Spectrometry/methods
16.
J Neurochem ; 135(5): 880-96, 2015 Dec.
Article En | MEDLINE | ID: mdl-26365051

In search of druggable synthetic lipids that function as potential modulators of synaptic transmission and plasticity, we synthesized sulfoglycolipid IG20, which stimulates neuritic outgrowth. Here, we have explored its effects on ion channels and exocytosis in bovine chromaffin cells. IG20 augmented the rate of basal catecholamine release. Such effect did not depend on Ca(2+) mobilization from intracellular stores; rather, IG20-elicited secretion entirely dependent on Ca(2+) entry through L-subtype voltage-activated Ca(2+) channels. Those channels were recruited by cell depolarization mediated by IG20 likely through its ability to enhance the recruitment of Na(+) channels at more hyperpolarizing potentials. Confocal imaging with fluorescent derivative IG20-NBD revealed its rapid incorporation and confinement into the plasmalemma, supporting the idea that IG20 effects are exerted through a plasmalemmal-delimited mechanism. Thus, synthetic IG20 seems to mimic several physiological effects of endogenous lipids such as regulation of ion channels, Ca(2+) signaling, and exocytosis. Therefore, sulfoglycolipid IG20 may become a pharmacological tool for investigating the role of the lipid environment on neuronal excitability, ion channels, neurotransmitter release, synaptic efficacy, and neuronal plasticity. It may also inspire the synthesis of druggable sulfoglycolipids aimed at increasing synaptic plasticity and efficacy in neurodegenerative diseases and traumatic brain-spinal cord injury. The novel synthetic sulfoglycolipid IG20 mimics several physiological effects of endogenous lipids such as regulation of ion channels, Ca(2+) signaling, and exocytosis. This profile may eventually drive enhanced synaptic plasticity and efficacy.


Chromaffin Cells/drug effects , Exocytosis/drug effects , Glycolipids/pharmacology , Sodium Channels/physiology , Animals , Azoles/metabolism , Azoles/pharmacology , Cadmium/pharmacology , Calcium/metabolism , Catecholamines/metabolism , Cattle , Cells, Cultured , Chromaffin Cells/physiology , Cytosol/drug effects , Cytosol/metabolism , Enzyme Inhibitors/pharmacology , Fura-2/analogs & derivatives , Fura-2/metabolism , Glycolipids/metabolism , Membrane Transport Modulators/pharmacology , Nifedipine/pharmacology , Nitrobenzenes/metabolism , Nitrobenzenes/pharmacology , Potassium/metabolism , Potassium/pharmacology , Sodium/metabolism , Tetrodotoxin/pharmacology , Thapsigargin/pharmacology
17.
Am J Physiol Cell Physiol ; 308(1): C1-19, 2015 Jan 01.
Article En | MEDLINE | ID: mdl-25377090

Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na(+) current, 40% in Ca(2+)-dependent K(+) current, and 53% in voltage-dependent K(+) current. Ca(2+) current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca(2+) was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.


Amyotrophic Lateral Sclerosis/enzymology , Catecholamines/metabolism , Chromaffin Cells/enzymology , Exocytosis , Membrane Fusion , Superoxide Dismutase/metabolism , Synaptic Transmission , Acetylcholine/pharmacology , Action Potentials , Age Factors , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Calcium/metabolism , Calcium Signaling , Chromaffin Cells/drug effects , Chromaffin Cells/metabolism , Disease Models, Animal , Exocytosis/drug effects , Humans , Ion Transport , Kinetics , Male , Membrane Fusion/drug effects , Mice, Transgenic , Motor Activity , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , Potassium/metabolism , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Sodium/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Synaptic Transmission/drug effects
18.
Gastroenterology ; 147(5): 1119-33.e4, 2014 Nov.
Article En | MEDLINE | ID: mdl-25127677

BACKGROUND & AIMS: Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. METHODS: We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. RESULTS: Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting differentiation toward an acinar cell program. CONCLUSIONS: In mice, nicotine promotes pancreatic carcinogenesis and tumor development via down-regulation of Gata6 to induce acinar cell dedifferentiation.


Acinar Cells/drug effects , Carcinoma, Pancreatic Ductal/chemically induced , Cell Dedifferentiation/drug effects , GATA6 Transcription Factor/metabolism , Nicotine/toxicity , Nicotinic Agonists/toxicity , Pancreas/drug effects , Pancreatic Neoplasms/chemically induced , Proto-Oncogene Proteins p21(ras)/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/prevention & control , Carcinoma, Pancreatic Ductal/secondary , Cell Line, Tumor , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Epithelial-Mesenchymal Transition/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , GATA6 Transcription Factor/deficiency , GATA6 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Metformin/pharmacology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mutation , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/prevention & control , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/deficiency , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/drug effects , Time Factors , Transfection , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics
19.
Brain Res ; 1573: 27-36, 2014 Jul 21.
Article En | MEDLINE | ID: mdl-24833065

Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration.


Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Animal/physiopathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacology , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bupivacaine/pharmacology , Cell Death/drug effects , Cell Death/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Inflammation/drug therapy , Inflammation/physiopathology , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne , Necrosis/drug therapy , Necrosis/physiopathology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Regeneration/drug effects , Regeneration/physiology , alpha7 Nicotinic Acetylcholine Receptor/genetics
20.
Am J Physiol Cell Physiol ; 305(2): C160-72, 2013 Jul 15.
Article En | MEDLINE | ID: mdl-23596174

The activity of the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) is highly sensitive to temperature. We took advantage of this fact to explore here the effects of the NCX blocker KB-R7943 (KBR) at 22 and 37°C on the kinetics of Ca(2+) currents (ICa), cytosolic Ca(2+) ([Ca(2+)]c) transients, and catecholamine release from bovine chromaffin cells (BCCs) stimulated with high K(+), caffeine, or histamine. At 22°C, the effects of KBR on those parameters were meager or nil. However, at 37°C whereby the NCX is moving Ca(2+) at a rate fivefold higher than at 22°C, various of the effects of KBR were pronounced, namely: 1) no effects on ICa; 2) reduction of the [Ca(2+)]c transient amplitude and slowing down of its rate of clearance; 3) blockade of the K(+)-elicited quantal release of catecholamine; 4) blockade of burst catecholamine release elicited by K(+); 5) no effect on catecholamine release elicited by short K(+) pulses (1-2 s) and blockade of the responses produced by longer K(+) pulses (3-5 s); and 6) potentiation of secretion elicited by histamine or caffeine. Furthermore, the more selective NCX blocker SEA0400 also potentiated the secretory responses to caffeine. The results suggest that at physiological temperature the NCX substantially contributes to shaping the kinetics of [Ca(2+)]c transients and the exocytotic responses elicited by Ca(2+) entry through Ca(2+) channels as well as by Ca(2+) release from the endoplasmic reticulum.


Calcium Signaling/physiology , Chromaffin Cells/physiology , Exocytosis/drug effects , Sodium-Calcium Exchanger/metabolism , Temperature , Animals , Bromides/pharmacology , Caffeine/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Catecholamines/metabolism , Cattle , Cell Membrane , Cells, Cultured , Chromaffin Cells/drug effects , Histamine/pharmacology , Kinetics , Membrane Potentials/physiology , Nifedipine/pharmacology , Patch-Clamp Techniques , Potassium/pharmacology , Potassium Compounds/pharmacology , Pyrroles/pharmacology , Sodium-Calcium Exchanger/genetics
...