Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934224

RESUMEN

Gut dysbiosis is linked to metabolic and neurodegenerative diseases and comprises a plausible link between high-fat diet (HFD) and brain dysfunction. Here we show that gut microbiota modulation by either antibiotic treatment for 5 weeks or a brief 3-day fecal microbiota transplantation (FMT) regimen from low-fat (control) diet-fed mice decreased weight gain, adipose tissue hypertrophy, and glucose intolerance induced by HFD in C57BL/6 male mice. Notably, gut microbiota modulation by FMT completely reversed impaired recognition memory induced by HFD, whereas modulation by antibiotics had less pronounced effect. Improvement in recognition memory by FMT was accompanied by decreased HFD-induced astrogliosis in the hippocampal cornu ammonis region. Gut microbiome composition analysis indicated that HFD diminished microbiota diversity compared to control diet, whereas FMT partially restored the phyla diversity. Our findings reinforce the role of the gut microbiota on HFD-induced cognitive impairment and suggest that modulating the gut microbiota may be an effective strategy to prevent metabolic and cognitive dysfunction associated with unfavorable dietary patterns.

2.
Front Neurosci ; 15: 734158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803583

RESUMEN

Worldwide, and especially in Western civilizations, most of the staple diets contain high amounts of fat and refined carbohydrates, leading to an increasing number of obese individuals. In addition to inducing metabolic disorders, energy dense food intake has been suggested to impair brain functions such as cognition and mood control. Here we demonstrate an impaired memory function already 3 days after the start of a high-fat diet (HFD) exposure, and depressive-like behavior, in the tail suspension test, after 5 days. These changes were followed by reduced synaptic density, changes in mitochondrial function and astrocyte activation in the hippocampus. Preceding or coinciding with the behavioral changes, we found an induction of the proinflammatory cytokines TNF-α and IL-6 and an increased permeability of the blood-brain barrier (BBB), in the hippocampus. Finally, in mice treated with a TNF-α inhibitor, the behavioral and BBB alterations caused by HFD-feeding were mitigated suggesting that inflammatory signaling was critical for the changes. In summary, our findings suggest that HFD rapidly triggers hippocampal dysfunction associated with BBB disruption and neuroinflammation, promoting a progressive breakdown of synaptic and metabolic function. In addition to elucidating the link between diet and cognitive function, our results might be relevant for the comprehension of the neurodegenerative process.

3.
Colloids Surf B Biointerfaces ; 201: 111608, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33618084

RESUMEN

Hypercholesterolemia has been linked to neurodegenerative disease development. Previously others and we demonstrated that high levels of plasma cholesterol-induced memory impairments and depressive-like behavior in mice. More recently, some evidence reported that a hypercholesterolemic diet led to motor alterations in rodents. Peripheral inflammation, blood-brain barrier (BBB) dysfunction, and neuroinflammation seem to be the connective factors between hypercholesterolemia and brain disorders. Herein, we aimed to investigate whether treatment with gold nanoparticles (GNPs) can prevent the inflammation, BBB disruption, and behavioral changes related to neurodegenerative diseases and depression, induced by hypercholesterolemic diet intake in mice. Adult Swiss mice were fed a standard or a high cholesterol diet for eight weeks and concomitantly treated with either vehicle or GNPs by the oral route. At the end of treatments, mice were subjected to behavioral tests. After that, the blood, liver, and brain structures were collected for biochemical analysis. The high cholesterol diet-induced an increase in the plasma cholesterol levels and body weight of mice, which were not modified by GNPs treatment. Hypercholesterolemia was associated with enhanced liver tumor necrosis factor- α (TNF-α), BBB dysfunction in the hippocampus and olfactory bulb, memory impairment, cataleptic posture, and depressive-like behavior. Notably, GNPs administration attenuated liver inflammation, BBB dysfunction, and improved behavioral and memory deficits in hypercholesterolemic mice. Also, GNPs increased mitochondrial complex I activity in the prefrontal cortex of mice. It is worth highlight that GNPs' administration did not cause toxic effects in the liver and kidney of mice. Overall, our results indicated that GNPs treatment potentially mitigated peripheral, brain, and memory impairments related to hypercholesterolemia.


Asunto(s)
Hipercolesterolemia , Nanopartículas del Metal , Enfermedades Neurodegenerativas , Animales , Oro , Hipercolesterolemia/tratamiento farmacológico , Ratones , Nanotecnología
4.
Mol Neurobiol ; 58(2): 735-749, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33011857

RESUMEN

Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.


Asunto(s)
Depresión/fisiopatología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/deficiencia , Memoria a Corto Plazo , Norepinefrina/metabolismo , Piruvaldehído/efectos adversos , Animales , Bupropión/farmacología , Dopamina/metabolismo , Femenino , Glutatión/metabolismo , Inmovilización , Memoria a Corto Plazo/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Fosforilación/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Piruvaldehído/administración & dosificación , Serotonina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
5.
Nutr Neurosci ; 24(12): 978-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31910791

RESUMEN

Although the benefits of moderate intake of red wine in decreasing incidence of cardiovascular diseases associated to hypercholesterolemia are well recognized, there are still widespread misconceptions about its effects on the hypercholesterolemia-related cognitive impairments. Herein we investigated the putative benefits of regular red wine consumption on cognitive performance of low-density lipoprotein receptor knockout (LDLr-/-) mice, an animal model of familial hypercholesterolemia, which display cognitive impairments since early ages. The red wine was diluted into the drinking water to a final concentration of 6% ethanol and was available for 60 days for LDLr-/- mice fed a normal or high-cholesterol diet. The results indicated that moderate red wine consumption did not alter locomotor parameters and liver toxicity. Across multiple cognitive tasks evaluating spatial learning/reference memory and recognition/identification memory, hypercholesterolemic mice drinking red wine performed significantly better than water group, regardless of diet. Additionally, immunofluorescence assays indicated a reduction of astrocyte activation and lectin stain in the hippocampus of LDLr-/- mice under consumption of red wine. These findings demonstrate that the moderate consumption of red wine attenuates short- and long-term memory decline associated with hypercholesterolemia in mice and suggest that it could be through a neurovascular action.


Asunto(s)
Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipercolesterolemia/complicaciones , Receptores de LDL/fisiología , Vino , Animales , Conducta Animal , Encéfalo/irrigación sanguínea , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatología , Hepatopatías Alcohólicas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Receptores de LDL/deficiencia , Receptores de LDL/genética
6.
Exp Physiol ; 104(3): 306-321, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578638

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT: Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Insulina/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Obesidad/fisiopatología , Descanso/fisiología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA