Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Langmuir ; 40(5): 2531-2542, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38258284

Film formation is a vital step for coating applications where a homogeneous, defect-free solid phase should be obtained, starting from a liquid casting formulation. Recently, an alternative waterborne-coating approach was proposed, based on the formation of a polyelectrolyte complex film. In this approach, an evaporating base induces a pH change during drying that initiates the complexation of oppositely charged polyelectrolytes, followed by further densification. In previous studies, ammonia was used as the evaporative base, leading to relatively fast evaporation and resulting in films showing significant brittleness, which tended to crack at low relative humidity or larger thicknesses. We hypothesize that slower complexation and/or evaporation can reduce the problematic stress build-up in the prepared polyelectrolyte complex coatings. For this reason, we studied the changes in the film formation process when there are different bases and cosolvents. We found that reducing the evaporation rate by changing ammonia to the slower evaporating dimethylamine or by adding DMSO as a cosolvent, led to less internal stress build-up during film formation, which could be beneficial for film application. Indeed, films prepared with ammonia showed cracking after 1 h, while films prepared with dimethylamine only showed cracking after one month. The fast evaporation of ammonia was also found to cause a temporary turbid phase, indicating phase separation, while for the slower evaporating bases, this did not occur. All prepared films remained sensitive to humidity, which poses the next challenge for these promising coatings.

2.
ACS Appl Polym Mater ; 5(10): 7968-7981, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37854302

The undesired spontaneous deposition and accumulation of matter on surfaces, better known as fouling, is a problematic and often inevitable process plaguing a variety of industries. This detrimental process can be reduced or even prevented by coating surfaces with a dense layer of end-grafted polymer: a polymer brush. Producing such polymer brushes via adsorption presents a very attractive technique, as large surfaces can be coated in a quick and simple manner. Recently, we introduced a simple and scalable two-step adsorption strategy to fabricate block copolymer-based antifouling coatings on hydrophobic surfaces. This two-step approach involved the initial adsorption of hydrophobic-charged diblock copolymer micelles acting as a primer, followed by the complexation of oppositely charged-antifouling diblock copolymers to form the antifouling brush coating. Here, we significantly improve this adsorption-based zipper brush via systematic tuning of various parameters, including pH, salt concentration, and polymer design. This study reveals several key outcomes. First of all, increasing the hydrophobic/hydrophilic block ratio of the anchoring polymeric micelles (i.e., decreasing the hydrophilic corona) promotes adsorption to the surface, resulting in the most densely packed, uniform, and hydrophilic primer layers. Second, around a neutral pH and at a low salt concentration (1 mM), complexation of the weak polyelectrolyte (PE) blocks results in brushes with the best antifouling efficacy. Moreover, by tuning the ratio between these PE blocks, the brush density can be increased, which is also directly correlated to the antifouling performance. Finally, switching to different antifouling blocks can increase the internal density or strengthen the bound hydration layer of the brush, leading to an additional enhancement of the antifouling properties (>99% lysozyme, 87% bovine serum albumin).

3.
ACS Appl Mater Interfaces ; 15(39): 45745-45755, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37729586

Electrospinning has been demonstrated as a very promising method to create bipolar membranes (BPMs), especially as it allows three-dimensional (3D) junctions of entangled anion exchange and cation exchange nanofibers. These newly developed BPMs are relevant to demanding applications, including acid and base production, fuel cells, flow batteries, ammonia removal, concentration of carbon dioxide, and hydrogen generation. However, these applications require the introduction of catalysts into the BPM to allow accelerated water dissociation, and this remains a challenge. Here, we demonstrate a versatile strategy to produce very efficient BPMs through a combined electrospinning-electrospraying approach. Moreover, this work applies the newly investigated water dissociation catalyst of nanostructured silica MCM-41. Several BPMs were produced by electrospraying MCM-41 nanoparticles into the layers directly adjacent to the main BPM 3D junction. BPMs with various loadings of MCM-41 nanoparticles and BPMs with different catalyst positions relative to the junction were investigated. The membranes were carefully characterized for their structure and performance. Interestingly, the water dissociation performance of BPMs showed a clear optimal MCM-41 loading where the performance outpaced that of a commercial BPM, recording a transmembrane voltage of approximately 1.11 V at 1000 A/m2. Such an excellent performance is very relevant to fuel cell and flow battery applications, but our results also shed light on the exact function of the catalyst in this mode of operation. Overall, we demonstrate clearly that introducing a novel BPM architecture through a novel hybrid electrospinning-electrospraying method allows the uptake of promising new catalysts (i.e., MCM-41) and the production of very relevant BPMs.

4.
Langmuir ; 39(19): 6874-6884, 2023 May 16.
Article En | MEDLINE | ID: mdl-37126784

Membranes based on polyelectrolyte complexes (PECs) can now be prepared through several sustainable, organic solvent-free approaches. A recently developed approach allows PECs made by stoichiometric mixing of polyelectrolytes to be hot-pressed into dense saloplastics, which then function as ion-exchange membranes. An important advantage of PECs is that tuning their properties can provide significant control over the properties of the fabricated materials, and thus over their separation properties. This work studies the effects of two key parameters─(a) ratio of mixing and (b) choice of polyelectrolytes─on the mechanical, material, and separation properties of their corresponding hot-pressed saloplastic-based ion-exchange membranes. By varying these two main parameters, charge density─the key property of any IEM─was found to be controllable. While studying several systems, including strong/strong, strong/weak, and weak/weak combinations of polyelectrolytes, it was observed that not all systems could be processed into saloplastic membranes. For the processable systems, expected trends were observed where a higher excess of one polyelectrolyte would lead to a more charged system, resulting in higher water uptake and better permselectivities. An anomaly was the polystyrenesulfonate-polyvinylamine system, which showed an opposite trend with a higher polycation ratio, leading to a more negative charge. Overall, we have found that it is possible to successfully fabricate saloplastic-based anion- and cation-exchange membranes with tunable charge densities through careful choice of polyelectrolyte combination and ratio of mixing.

5.
ACS Appl Mater Interfaces ; 15(15): 19682-19694, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37016820

Fouling remains a widespread challenge as its nonspecific and uncontrollable character limits the performance of materials and devices in numerous applications. Although many promising antifouling coatings have been developed to reduce or even prevent this undesirable adhesion process, most of them suffer from serious limitations, specifically in scalability. Whereas scalability can be particularly problematic for covalently bound antifouling polymer coatings, replacement by physisorbed systems remains complicated as it often results in less effective, low-density films. In this work, we introduce a two-step adsorption strategy to fabricate high-density block copolymer-based antifouling coatings on hydrophobic surfaces, which exhibit superior properties compared to one-step adsorbed coatings. The obtained hybrid coating manages to effectively suppress the attachment of both lysozyme and bovine serum albumin, which can be explained by its dense and homogeneous surface structure as well as the desired polymer conformation. In addition, the intrinsic reversibility of the adhered complex coacervate core micelles allows for the successful triggered release and regeneration of the hybrid coating, resulting in full recovery of its antifouling properties. The simplicity and reversibility make this a unique and promising antifouling strategy for large-scale underwater applications.

6.
Membranes (Basel) ; 13(4)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37103815

The in situ synthesis of Fe0 particles using poly-(acrylic acid) (PAA) is an effective tool for fabricating catalytic membranes relevant to advanced oxidation processes (AOPs). Through their synthesis in polyelectrolyte multilayer-based nanofiltration membranes, it becomes possible to reject and degrade organic micropollutants simultaneously. In this work, we compare two approaches, where Fe0 nanoparticles are synthesized in or on symmetric multilayers and asymmetric multilayers. For the membrane with symmetric multilayers (4.0 bilayers of poly (diallyldimethylammonium chloride) (PDADMAC)/PAA), the in situ synthesized Fe0 increased its permeability from 1.77 L/m2/h/bar to 17.67 L/m2/h/bar when three Fe2+ binding/reducing cycles were conducted. Likely, the low chemical stability of this polyelectrolyte multilayer allows it to become damaged through the relatively harsh synthesis. However, when the in situ synthesis of Fe0 was performed on top of asymmetric multilayers, which consist of 7.0 bilayers of the very chemically stable combination of PDADMAC and poly(styrene sulfonate) (PSS), coated with PDADMAC/PAA multilayers, the negative effect of the Fe0 in situ synthesized can be mitigated, and the permeability only increased from 1.96 L/m2/h/bar to 2.38 L/m2/h/bar with three Fe2+ binding/reducing cycles. The obtained membranes with asymmetric polyelectrolyte multilayers exhibited an excellent naproxen treatment efficiency, with over 80% naproxen rejection on the permeate side and 25% naproxen removal on the feed solution side after 1 h. This work demonstrates the potential of especially asymmetric polyelectrolyte multilayers to be effectively combined with AOPs for the treatment of micropollutants (MPs).

7.
ACS Appl Polym Mater ; 5(1): 355-369, 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36660251

Over the past decade polyelectrolyte multilayer (PEM)-based membranes have gained a lot of interest in the field of nanofiltration (NF) as an alternative to conventional polyamide-based thin film composite membranes. With great variety in fabrication conditions, these membranes can achieve superior properties such as high chemical resistance and excellent filtration performance. Some of the most common polyelectrolytes used to prepare NF membranes are weak, meaning that their charge density depends on pH within the normal window of operation relevant for potential applications (pH 0-14). This might cause a dependency of membrane properties on the pH of filtered solutions, as indicated by other applications of PEMs. In this work, the susceptibility of membrane structure (swelling and surface charge) and performance (permeability, molecular weight cutoff, and salt retention) toward the pH of the filtration solution was studied for four fundamentally different PEM systems: poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium-4-styrenesulfonate) (PSS) (strong/strong), poly(allylamine hydrochloric acid) (PAH)/poly(acrylic acid) (PAA) (weak/weak), and PAH/PSS (weak/strong) and PAH/PSS+PAH/PAA (asymmetric). Slight variations in structure and performance of the PDADMAC/PSS-based membranes were observed. On the contrary, structure and performance of PAH/PAA-based membranes are very susceptible to feed solution pH. A continuous change in charge density with variation in pH significantly affects salt retention. An increased swelling at pH 9 translates to variation in permeability and molecular weight cutoff of the membrane. The susceptibility of PAH/PSS-based membranes to pH is less pronounced compared to the PAH/PAA-based membranes since only one of the polyelectrolytes involved is weak. No structural changes were observed, indicating additional specific interactions between the polyelectrolytes other than electrostatic forces that stabilize film structure. A combination of the PAH/PSS and PAH/PAA system (8 + 2 bilayers) also displays a clear dependency of both membrane structure and performance on solution pH, where PAH/PSS is dominating due to a higher bilayer number.

8.
ACS Appl Mater Interfaces ; 14(38): 43195-43206, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36106768

Ultrafiltration membranes are important porous materials to produce freshwater in an increasingly water-scarce world. A recent approach to generate porous membranes is solvent transfer induced phase separation (STrIPS). During STrIPS, the interplay of liquid-liquid phase separation and nanoparticle self-assembly results in hollow fibers with small surface pores, ideal structures for applications as filtration membranes. However, the underlying mechanisms of the membrane formation are still poorly understood, limiting the control over structure and properties. To address this knowledge gap, we study the nonequilibrium dynamics of hollow fiber structure evolution. Confocal microscopy reveals the distribution of nanoparticles and monomers during STrIPS. Diffusion simulations are combined with measurements of the interfacial elasticity to investigate the effect of the solvent concentration on nanoparticle stabilization. Furthermore, we demonstrate the separation performance of the membrane during ultrafiltration. To this end, polyelectrolyte multilayers are deposited on the membrane, leading to tunable pores that enable the removal of dextran molecules of different molecular weights (>360 kDa, >60 kDa, >18 kDa) from a feed water stream. The resulting understanding of STrIPS and the simplicity of the synthesis process open avenues to design novel membranes for advanced separation applications.

9.
ACS Appl Polym Mater ; 4(7): 5173-5179, 2022 Jul 08.
Article En | MEDLINE | ID: mdl-35846780

Monitoring the performance of polymer-functionalized surfaces that aim at removing and inactivating viruses is typically labor-intensive and time-consuming. This hampers the development and optimization of such surfaces. Here we present experiments of low complexity that can be used to characterize and quantify the antiviral properties of polymer-functionalized surfaces. We showcase our approach on polyethylenimine (PEI)-coated poly(ether sulfone) (PES) microfiltration membranes. We use a fluorescently labeled model virus to quantify both virus removal and inactivation. We directly quantify the log removal of intact viruses by this membrane using single particle counting. Additionally, we exploit the change in photophysical properties upon disassembly of the virus to show that viruses are inactivated by the PEI coating. Although only a small fraction of intact viruses can pass the membrane, a considerable fraction of inactivated, disassembled viruses are found in the filtrate. Fluorescence microscopy experiments show that most of the viruses left behind on the microfiltration membrane are in the inactivated, disassembled state. Combined, our fluorescence microscopy and spectroscopy experiments show that not only does the model virus adsorb to the PEI coating on the membrane but also the interaction with PEI results in the disassembly of the virus capsid.

10.
ACS Appl Polym Mater ; 4(5): 2962-2971, 2022 May 13.
Article En | MEDLINE | ID: mdl-35601465

Polyelectrolyte multilayers (PEMs) are highly promising selective layers for membrane applications, especially because of their versatility. By careful choice of the types of polyelectrolyte and the coating conditions, the PEM material properties can be controlled to achieve desired separations. Less understood, however, is how the molecular weight (Mw) of the chosen polyelectrolytes (PEs) will impact layer build-up and thus separation properties. In this work, we investigate the influence of Mw on the performance of two types of PEM-based membranes. PEM membranes have been fabricated from low (15-20 kDa) and high (150-250 kDa) Mw poly(allylamine hydrochloride) (PAH), poly(sodium-4-styrenesulfonate)(PSS), and poly(acrylic acid) (PAA) to obtain PAH/PSS- and PAH/PAA-based nanofiltration membranes. For the linear growing PSS/PAH system, with low PE mobility, the Mw is found to influence the pore closure of the support membrane during coating but not its subsequent performance. In contrast, for the exponentially growing PAH/PAA system with a high PE mobility, much stronger effects of Mw are observed. For low-Mw PAH/PAA PEM membranes, separation properties are found that would be expected of a negatively charged separation layer, while for high-Mw PAH/PAA PEMs a positive separation layer is found. Moreover, molecular weight cutoff (MWCO) measurements show that the low-Mw PAH/PAA multilayers are much denser than their high-Mw counterparts. Here the higher mobility of the small PE chains is expected to lead to more optimal binding between the oppositely charged PEs, explaining the denser structure. Lastly, we find that PEM pH stability is lowest for low-Mw PAH/PAA multilayers which can again be attributed to their higher mobility. Clearly, the Mw can significantly influence the separation performance of PEM-based membranes, especially for more mobile PEM systems such as PAA/PAH.

11.
J Colloid Interface Sci ; 621: 431-439, 2022 Sep.
Article En | MEDLINE | ID: mdl-35483176

Due to the complexity of oil-in-water emulsions, the existing literature is still missing a mathematical tool that can describe membrane fouling in a fully quantitative manner on the basis of relevant fouling mechanisms. HYPOTHESIS: In this work, a quantitative model that successfully describes cake layer formation and pore blocking is presented. We propose that the degree of pore blocking is determined by the membrane contact angle and the resulting surface coverage, while the cake layer is described by a mass balance and a cake erosion flux. VALIDATION: The model is validated by comparison to experimental data from previous works (Dickhout et al. 2019; Virga et al., 2020) where membrane type, surfactant type and salinity were varied. Most input parameters could be directly taken from the experimental conditions, while four fitting parameters were required. FINDINGS: The experimental data can be well described by the model which was developed to provide insight into the dominant fouling mechanisms. Moreover, where existing models usually assume that pore blocking precedes cake layer formation, here we find that cake layer formation can start and occur while the degree of pore blocking is still increasing, in line with the more dynamic nature of oil droplets filtration. These new conceptual advances in the field of colloid and interface science open up new pathways for membrane fouling understanding, prevention and control.


Ultrafiltration , Water Purification , Filtration , Membranes, Artificial , Surface-Active Agents , Ultrafiltration/methods , Water Purification/methods
12.
J Colloid Interface Sci ; 616: 903-910, 2022 Jun 15.
Article En | MEDLINE | ID: mdl-35259720

HYPOTHESIS: Polymer membranes play a critical role in water treatment, chemical industry, and medicine. Unfortunately, the current standard for polymer membrane production requires unsustainable and harmful organic solvents. Aqueous phase separation (APS) has recently been proposed as a method to produce membranes in a more sustainable manner through induced polyelectrolyte complexation in aqueous solutions. EXPERIMENTS: We demonstrate that APS has another natural advantage that goes beyond sustainability: the easy incorporation of enzymes in the membrane structure. Biocatalytic membranes hold great promise in for example biorefinery, but the most common current post-production processes to immobilize enzymes on the membrane surface are complicated and expensive. FINDINGS: In this study we demonstrated the first biocatalytic membrane produced via APS. We demonstrate an easy procedure to incorporate lysozyme in polyelectrolyte complex membranes made via APS. Our functionalized membranes have the same structure, water permeability (in the range of high nanofiltration, low ultrafiltration), and retention as membranes without lysozyme. Lysozyme is antibacterial by catalysing the hydrolysis of specific peptidoglycan bonds in bacteria walls. We demonstrate that the functionalized membranes are also capable of catalysing this reaction. The membranes remain enzymatically active for a period of at least one week. This opens new routes to produce polymer membranes with added biological function.


Membranes, Artificial , Muramidase , Polyelectrolytes , Polymers/chemistry , Ultrafiltration/methods
13.
ACS Appl Polym Mater ; 4(2): 1010-1020, 2022 Feb 11.
Article En | MEDLINE | ID: mdl-35178524

Hollow fiber (HF) membrane geometry is the preferred choice for most commercial membrane operations. Such fibers are conventionally prepared via the non-solvent-induced phase separation technique, which heavily relies on hazardous and reprotoxic organic solvents such as N-methyl pyrrolidone. A more sustainable alternative, i.e., aqueous phase separation (APS), was introduced recently that utilizes water as a solvent and non-solvent for the production of polymeric membranes. Herein, for the first time, we demonstrate the preparation of sustainable and functional HF membranes via the APS technique in a dry-jet wet spinning process. The dope solution comprising poly(sodium 4-styrenesulfonate) (PSS) and polyethyleneimine (PEI) at high pH along with an aqueous bore liquid is pushed through a single orifice spinneret into a low pH acetate buffer coagulation bath. Here, PEI becomes charged resulting in the formation of a polyelectrolyte complex with PSS. The compositions of the bore liquid and coagulation bath were systematically varied to study their effect on the structure and performance of the HF membranes. The microfiltration-type membranes (permeability ∼500 to 800 L·m-2·h-1·bar-1) with complete retention of emulsion droplets were obtained when the precipitation rate was slow. Increasing the concentration of the acetate buffer in the bath led to the increase in precipitation rate resulting in ultrafiltration-type membranes (permeability ∼12 to 15 L·m-2·h-1·bar-1) having molecular weight cut-offs in the range of ∼7.8-11.6 kDa. The research presented in this work confirms the versatility of APS and moves it another step closer to large-scale use.

14.
Membranes (Basel) ; 11(11)2021 Oct 29.
Article En | MEDLINE | ID: mdl-34832064

In the single-polyelectrolyte aqueous phase separation (APS) approach, membranes are prepared by precipitating a weak polyelectrolyte from a concentrated aqueous solution using a pH switch. This has proven to be a versatile and more sustainable method compared to conventional approaches as it significantly reduces the use of organic solvents. Poly(styrene-alt-maleic acid) (PSaMA) is a polymer that has been extensively investigated for APS and has been the basis for both open and dense membranes with good performances. These membranes are chemically crosslinked and, in this work, we further investigated ultrafiltration (UF) and nanofiltration (NF) membranes prepared with PSaMA for their stability in various organic solvents and under different pH conditions. It was shown that these membranes had stable performances in both isopropanol (IPA) and toluene, and a slightly reduced performance in N-methyl-2-pyrollidone (NMP). However, PSaMA did not perform well as a selective layer in these solvents, indicating that the real opportunity would be to use the UF-type PSaMA membranes as solvent-stable support membranes. Additionally, the membranes proved to be stable in an acidic-to-neutral pH regime (pH 2-7); and, due to the pH-responsive nature of PSaMA, for the NF membranes, a pH-dependent retention of Mg2+ and SO42- ions was observed and, for the UF membranes, a strong responsive behavior was observed, where the pH can be used to control the membrane permeability. However, long-term exposure to elevated pH conditions (pH 8-10) resulted in severe swelling of the NF membranes, resulting in defect formation, and compaction of the UF membranes. For the UF membranes, this compaction did prove to be reversible for some but not all of the membrane samples measured. These results showed that in aqueous systems, membranes prepared with PSaMA had interesting responsive behaviors but performed best at neutral and acidic pH values. Moreover, the membranes exhibited excellent stability in the organic solvents IPA and toluene.

15.
Soft Matter ; 17(41): 9420-9427, 2021 Oct 27.
Article En | MEDLINE | ID: mdl-34609392

In this work, polyelectrolyte mixing ratio is studied as a tuning parameter to control the charge, and thus the separation properties of polyelectrolyte complex (PEC) membranes prepared via Aqueous Phase Separation (APS). In this approach, various ratios of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) are mixed at high salinity and the PEC-based membranes are then precipitated using low salinity coagulation baths. The monomeric ratio of PSS to PDADMAC is varied from 1.0 : 0.8 through to 1.0 : 1.2. Obtained membranes have an asymmetric structure and function as nanofiltration membranes with on average 1 L m-2 h-1 bar-1 pure water permeance and <400 Da molecular weight cut-off (MWCO); except for the 1.0 : 1.2 membrane, where the water permeance was much higher (>20 L m-2 h-1 bar-1) with a similarly low MWCO. For the first time, we report the formation of both negatively and positively charged PSS-PDADMAC based APS membranes, as determined by both streaming potential and salt retention measurements. We hypothesize that the salt type used in the APS process plays a key role in the observed change in membrane charge. The point where the membrane charge transitions from negative to positive is found to be between the 1.0 : 0.9 and 1.0 : 1.0 PSS : PDADMAC ratios. The polyelectrolyte ratio not only affects membrane charge, but also their mechanical properties. The 1.0 : 0.9 and 1.0 : 1.0 membranes perform the best amongst the membranes prepared in this study since they have high salt retentions (up to 90% Na2SO4 and 75% MgCl2, respectively) and better mechanical stability. The higher permeance of the more charged, and thus more swollen, 1.0 : 0.8 and 1.0 : 1.2 membranes provide a relevant new direction for the development of APS-based PEC membranes.

16.
ACS Appl Polym Mater ; 3(9): 4347-4374, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34541543

The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.

17.
ACS Appl Polym Mater ; 3(7): 3560-3568, 2021 Jul 09.
Article En | MEDLINE | ID: mdl-34278307

The aqueous phase separation (APS) technique allows membrane fabrication without use of unsustainable organic solvents, while at the same time, it provides extensive control over membrane pore size and morphology. Herein, we investigate if polyelectrolyte complexation-induced APS ultrafiltration membranes can be the basis for different types of nanofiltration membranes. We demonstrate that APS membranes can be used as support membranes for functional surface coatings like thin polyelectrolyte multilayer (PEMs) and interfacial polymerization (IP) coatings. Three different PEMs were fabricated on poly(sodium 4-styrene sulfonate) (PSS) poly(allylamine hydrochloride) (PAH) APS ultrafiltration membranes, and only 4.5 bilayers were needed to create nanofiltration membranes with molecular weight cut-off (MWCO) values of 210-390 Da while maintaining a roughly constant water permeability (∼1.7 L·m-2·h-1·bar-1). The PEM-coated membranes showed excellent MgCl2 (∼98%), NaCl (∼70%), and organic micropollutant retention values (>90%). Similarly, fabricating thin polyamide layers on the ultrafiltration PSS-PAH APS membranes by IP resulted in nanofiltration membranes with MWCO values of ∼200 Da. This work shows for the first time that APS membranes can indeed be utilized as excellent support membranes for the application of functional coatings without requiring any form of pretreatment.

18.
Polymers (Basel) ; 13(11)2021 May 28.
Article En | MEDLINE | ID: mdl-34071412

Aqueous phase separation (APS) is a recently developed sustainable alternative to the conventional organic solvent based nonsolvent-induced phase separation (NIPS) method to prepare polymeric membranes. In APS, polyelectrolytes are precipitated from aqueous solutions through pH or salinity switches. Although APS differs from NIPS in the polymer and solvents, they share many tuning parameters. In this work, we investigate the APS-based preparation of membranes from poly(styrene-alt-maleic acid) (PSaMA) with a focus on acid concentration in the coagulation bath, and polymer and additive concentration in the casting solution. Nanofiltration membranes are prepared using significantly lower concentrations of acid: 0.3 M HCl compared to the 2 M of either acetic or phosphoric acid used in previous works. It is shown that higher polymer concentrations can be used to prevent defect formation in the top layer. In addition, acetic acid concentration also strongly affects casting solution viscosity and thus can be used to control membrane structure, where lower acetic acid concentrations can prevent the formation of macrovoids in the support structure. The prepared nanofiltration membranes exhibit a very low molecular weight cutoff (210 ± 40 dalton), making these sustainable membranes very relevant for the removal of contaminants of emerging concern. Understanding how the parameters described here affect membrane preparation and performance is essential to optimizing membranes prepared with APS towards this important application.

19.
Nanotechnology ; 32(36)2021 Jun 17.
Article En | MEDLINE | ID: mdl-34020439

The toxicity towards viruses of silver nanoparticles (AgNPs) has been reported to be dependent on several factors such as particle concentration, size, and shape. Although these factors may indeed contribute to the toxicity of AgNPs, the results presented in this work demonstrate that surface chemistry and especially surface charge is a crucial factor governing their antiviral activity. Here, this work investigated the influence of capping agents representing various surface charges ranging from negative to positive. These AgNPs were capped with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) mercaptoacetic acid (MAA) and (branched polyethyleneimine (BPEI). We show that AgNPs exhibited surface charge-dependent toxicity towards MS2 bacteriophages. Among the capping agents under investigation, BPEI capped AgNPs (Ag/BPEI) exhibited the highest reduction of MS2 resulting in ≥6 log10-units reductions, followed by 4-5 log10-units reductions with PVP and PEG capping's and 3-4 log10-units with MAA and citrate cappings. Bare nanoparticles reported a mere 1-2 log10-units reduction. Electrostatic interaction between the positively charged BPEI-coating and the negatively charged virus surface played a significant role in bringing the MS2 closer to toxic silver ions (Ag+). Further results obtained from TEM showed that Ag/BPEI nanoparticles could directly damage the structure of the MS2 bacteriophages. AgNPs and cationic capping agents' observed synergy can lead to much lower and much more efficient dosing of AgNPs for antiviral applications.

20.
ACS Appl Mater Interfaces ; 13(18): 21844-21853, 2021 May 12.
Article En | MEDLINE | ID: mdl-33913689

Polyelectrolyte complex (PEC) films such as polyelectrolyte multilayers have demonstrated excellent oxygen barrier properties, but unfortunately, the established layer-by-layer approaches are laborious and difficult to scale up. Here, we demonstrate a novel single-step approach to produce a PEC film, based on the use of a volatile base. Ammonia was used to adjust the pH of poly(acrylic acid) (PAA) so that direct complexation was avoided when it was mixed with polyethylenimine (PEI). Different charge ratios of homogeneous PEI/PAA solutions were successfully prepared and phase diagrams varying the concentration of ammonia or polyelectrolyte were made to study the phase behavior of PEI, PAA, and ammonia in water. Transparent ∼1 µm thick films were successfully deposited on biaxially orientated polypropylene (BOPP) sheets using a Meyer rod. After casting the films, the decrease in pH, caused by the evaporation of ammonia, triggered the complexation during drying. The oxygen permeation properties of films with different ratios and single polyelectrolytes were tested. All films displayed excellent oxygen barrier properties, with an oxygen permeation below 4 cm3·m-2·day-1·atm-1 (<0.002 barrer) at the optimum ratio of 2:1 PEI/PAA. This ammonia evaporation-induced complexation approach creates a new pathway to prepare PEC films in one simple step while allowing the possibility of recycling.

...