Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5537, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956413

RESUMEN

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Hígado , Proteoma , Animales , Hígado/metabolismo , Proteoma/metabolismo , Masculino , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Transcriptoma , Ratones , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Síndrome Jet Lag/metabolismo , Horario de Trabajo por Turnos
2.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693605

RESUMEN

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag, which impact millions of people worldwide, are ill-defined. Here, we provided the first comprehensive description of liver circadian gene expression under normal and after ECD conditions. We found that post-transcription and post-translation processes are dominant contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome is re-written by ECD. The re-writing, which is associated with changes of circadian cis-regulatory elements, RNA-processing and protein trafficking, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.

3.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37205588

RESUMEN

REV-ERBα and REV-ERBß proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous 'switch' that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.

4.
PLoS Genet ; 18(7): e1010305, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789210

RESUMEN

Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Femenino , Lípidos , Lipoproteínas , Masculino , Ratones , Ubiquitina , Ubiquitina-Proteína Ligasas/genética
6.
Sci Rep ; 10(1): 15389, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958779

RESUMEN

Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection. We used an Environmental circadian disruption (ECD) model mimicking circadian disruption occurring during shift work, where mice had a 6-h advance in the normal light/dark cycle (LD) every week for a month. Control group mice were housed under normal 12/12 LD cycle. Our hypothesis was that compared to controls, mice that had their circadian rhythms disrupted in this ECD model will have a higher Chlamydia load, more pathology and decreased fertility rate following Chlamydia infection. Results showed that, compared to controls, mice that had their circadian rhythms disrupted (ECD) had higher Chlamydia loads, more tissue alterations or lesions, and lower fertility rate associated with chlamydial infection. Also, infected ECD mice elicited higher proinflammatory cytokines compared to mice under normal 12/12 LD cycle. These results imply that there might be an association between shift work and the increased likelihood of developing more severe disease from Chlamydia infection.


Asunto(s)
Infecciones por Chlamydia/etiología , Ritmo Circadiano/fisiología , Horario de Trabajo por Turnos/efectos adversos , Animales , Chlamydia/patogenicidad , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/patología , Chlamydia muridarum/patogenicidad , Femenino , Ratones , Ratones Endogámicos C57BL , Enfermedad Inflamatoria Pélvica/etiología , Fotoperiodo , Embarazo , Embarazo Ectópico/etiología
7.
J Pineal Res ; 69(4): e12697, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32976638

RESUMEN

In 1965, Dr Harry Angelman reported a neurodevelopmental disorder affecting three unrelated children who had similar symptoms: brachycephaly, mental retardation, ataxia, seizures, protruding tongues, and remarkable paroxysms of laughter. Over the past 50 years, the disorder became Angelman's namesake and symptomology was expanded to include hyper-activity, stereotypies, and severe sleep disturbances. The sleep disorders in many Angelman syndrome (AS) patients are broadly characterized by difficulty falling and staying asleep at night. Some of these patients sleep less than 4 hours a night and, in most cases, do not make up this lost sleep during the day-leading to the speculation that AS patients may "need" less sleep. Most AS patients also have severely reduced levels of melatonin, a hormone produced by the pineal gland exclusively at night. This nightly pattern of melatonin production is thought to help synchronize internal circadian rhythms and promote nighttime sleep in humans and other diurnal species. It has been proposed that reduced melatonin levels contribute to the sleep problems in AS patients. Indeed, emerging evidence suggests melatonin replacement therapy can improve sleep in many AS patients. However, AS mice show sleep problems that are arguably similar to those in humans despite being on genetic backgrounds that do not make melatonin. This suggests the hypothesis that the change in nighttime melatonin may be a secondary factor rather than the root cause of the sleeping disorder. The goals of this review article are to revisit the sleep and melatonin findings in both AS patients and animal models of AS and discuss what AS may tell us about the underlying mechanisms of, and interplay between, melatonin and sleep.


Asunto(s)
Síndrome de Angelman , Ritmo Circadiano , Melatonina , Glándula Pineal/metabolismo , Trastornos del Sueño-Vigilia , Síndrome de Angelman/sangre , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/fisiopatología , Animales , Humanos , Melatonina/sangre , Melatonina/uso terapéutico , Trastornos del Sueño-Vigilia/sangre , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Trastornos del Sueño-Vigilia/fisiopatología
8.
J Biol Rhythms ; 34(6): 610-621, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31607207

RESUMEN

The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism's physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.


Asunto(s)
Proteínas CLOCK/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Línea Celular , Ritmo Circadiano/genética , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Sci Rep ; 9(1): 11405, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388084

RESUMEN

Genital chlamydia infection in women causes complications such as pelvic inflammatory disease and tubal factor infertility, but it is unclear why some women are more susceptible than others. Possible factors, such as time of day of chlamydia infection on chlamydial pathogenesis has not been determined. We hypothesised that infections during the day, will cause increased complications compared to infections at night. Mice placed under normal 12:12 light: dark (LD) cycle were infected intravaginally with Chlamydia muridarum either at zeitgeber time 3, ZT3 and ZT15. Infectivity was monitored by periodic vaginal swabs and chlamydiae isolation. Blood and vaginal washes were collected for host immunologic response assessments. The reproductive tracts of the mice were examined histopathologically, and fertility was determined by embryo enumeration after mating. Mice infected at ZT3 shed significantly more C. muridarum than mice infected at ZT15. This correlated with the increased genital tract pathology observed in mice infected at ZT3. Mice infected at ZT3 were less fertile than mice infected at ZT15. The results suggest that the time of day of infection influences chlamydial pathogenesis, it indicates a possible association between complications from chlamydia infection and host circadian clock, which may lead to a better understanding of chlamydial pathogenesis.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia muridarum/patogenicidad , Relojes Circadianos/inmunología , Enfermedad Inflamatoria Pélvica/inmunología , Vagina/microbiología , Animales , Infecciones por Chlamydia/sangre , Infecciones por Chlamydia/complicaciones , Infecciones por Chlamydia/microbiología , Modelos Animales de Enfermedad , Femenino , Interacciones Microbiota-Huesped/inmunología , Humanos , Ratones , Enfermedad Inflamatoria Pélvica/microbiología , Fotoperiodo , Vagina/inmunología , Vagina/patología
10.
J Biol Rhythms ; 32(5): 380-393, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29098954

RESUMEN

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.


Asunto(s)
Ritmo Circadiano/genética , Genoma , Genómica , Estadística como Asunto/métodos , Bioestadística , Biología Computacional/métodos , Genómica/estadística & datos numéricos , Humanos , Metabolómica , Proteómica , Programas Informáticos , Biología de Sistemas
11.
Sci Rep ; 7(1): 5103, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698578

RESUMEN

Many of the physiological, cellular, and molecular rhythms that are present within the eye are under the control of circadian clocks. Experimental evidence suggests that the retinal circadian clock, or its output signals (e.g., dopamine and melatonin), may contribute to eye disease and pathology. We recently developed a retinal pigment ephithelium (RPE)-choroid preparation to monitor the circadian clock using PERIOD2 (PER2)::LUC knock-in mouse. In this study we report that dopamine, but not melatonin, is responsible for entrainment of the PER2::LUC bioluminescence rhythm in mouse RPE-choroid. Dopamine induced phase-advances of the PER2::LUC bioluminescence rhythm during the subjective day and phase-delays in the late subjective night. We found that dopamine acts exclusively through Dopamine 2 Receptors to entrain the circadian rhythm in PER2::LUC bioluminescence. Finallly, we found that DA-induced expression of core circadian clock genes Period1 and Period2 accompanied both phase advances and phase delays of the RPE-choroid clock, thus suggesting that - as in other tissues - the rapid induction of these circadian clock genes drives the resetting process. Since the RPE cells persist for the entire lifespan of an organism, we believe that RPE-choroid preparation may represent a new and unique tool to study the effects of circadian disruption during aging.


Asunto(s)
Relojes Circadianos , Proteínas Circadianas Period/genética , Receptores de Dopamina D2/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Células Cultivadas , Coroides/metabolismo , Dopamina/farmacología , Técnicas de Sustitución del Gen , Melatonina/farmacología , Ratones , Proteínas Circadianas Period/metabolismo , Epitelio Pigmentado de la Retina/citología
12.
Elife ; 62017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726633

RESUMEN

Sleep loss can severely impair the ability to perform, yet the ability to recover from sleep loss is not well understood. Sleep regulatory processes are assumed to lie exclusively within the brain mainly due to the strong behavioral manifestations of sleep. Whole-body knockout of the circadian clock gene Bmal1 in mice affects several aspects of sleep, however, the cells/tissues responsible are unknown. We found that restoring Bmal1 expression in the brains of Bmal1-knockout mice did not rescue Bmal1-dependent sleep phenotypes. Surprisingly, most sleep-amount, but not sleep-timing, phenotypes could be reproduced or rescued by knocking out or restoring BMAL1 exclusively in skeletal muscle, respectively. We also found that overexpression of skeletal-muscle Bmal1 reduced the recovery response to sleep loss. Together, these findings demonstrate that Bmal1 expression in skeletal muscle is both necessary and sufficient to regulate total sleep amount and reveal that critical components of normal sleep regulation occur in muscle.


Asunto(s)
Factores de Transcripción ARNTL/genética , Encéfalo/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Sueño/genética , Factores de Transcripción ARNTL/deficiencia , Animales , Relojes Circadianos/genética , Electrodos Implantados , Electroencefalografía , Electromiografía , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas , Secretogranina II/genética , Secretogranina II/metabolismo , Vigilia/genética
13.
Sci Rep ; 6: 28238, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27306933

RESUMEN

Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3a(m-/p+)) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting.


Asunto(s)
Síndrome de Angelman/genética , Modelos Animales de Enfermedad , Núcleo Supraquiasmático/metabolismo , Ubiquitina-Proteína Ligasas/genética , Amígdala del Cerebelo/metabolismo , Síndrome de Angelman/patología , Animales , Técnica del Anticuerpo Fluorescente , Impresión Genómica , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Núcleo Supraquiasmático/patología
14.
J Neurosci ; 35(40): 13587-98, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26446213

RESUMEN

Individuals with Angelman syndrome (AS) suffer sleep disturbances that severely impair quality of life. Whether these disturbances arise from sleep or circadian clock dysfunction is currently unknown. Here, we explored the mechanistic basis for these sleep disorders in a mouse model of Angelman syndrome (Ube3a(m-/p+) mice). Genetic deletion of the maternal Ube3a allele practically eliminates UBE3A protein from the brain of Ube3a(m-/p+) mice, because the paternal allele is epigenetically silenced in most neurons. However, we found that UBE3A protein was present in many neurons of the suprachiasmatic nucleus--the site of the mammalian circadian clock--indicating that Ube3a can be expressed from both parental alleles in this brain region in adult mice. We found that while Ube3a(m-/p+) mice maintained relatively normal circadian rhythms of behavior and light-resetting, these mice exhibited consolidated locomotor activity and skipped the timed rest period (siesta) present in wild-type (Ube3a(m+/p+)) mice. Electroencephalographic analysis revealed that alterations in sleep regulation were responsible for these overt changes in activity. Specifically, Ube3a(m-/p+) mice have a markedly reduced capacity to accumulate sleep pressure, both during their active period and in response to forced sleep deprivation. Thus, our data indicate that the siesta is governed by sleep pressure, and that Ube3a is an important regulator of sleep homeostasis. These preclinical findings suggest that therapeutic interventions that target mechanisms of sleep homeostasis may improve sleep quality in individuals with AS. SIGNIFICANCE STATEMENT: Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by loss of expression of the maternal copy of the UBE3A gene. Individuals with AS have severe sleep dysfunction that affects their cognition and presents challenges to their caregivers. Unfortunately, current treatment strategies have limited efficacy due to a poor understanding of the mechanisms underlying sleep disruptions in AS. Here we demonstrate that abnormal sleep patterns arise from a deficit in accumulation of sleep drive, uncovering the Ube3a gene as a novel genetic regulator of sleep homeostasis. Our findings encourage a re-evaluation of current treatment strategies for sleep dysfunction in AS, and suggest that interventions that promote increased sleep drive may alleviate sleep disturbances in individuals with AS.


Asunto(s)
Ondas Encefálicas/fisiología , Ritmo Circadiano/genética , Homeostasis/genética , Trastornos del Sueño-Vigilia/genética , Ubiquitina-Proteína Ligasas/metabolismo , Análisis de Varianza , Animales , Ondas Encefálicas/genética , Modelos Animales de Enfermedad , Electroencefalografía , Electromiografía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Núcleo Supraquiasmático/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Proc Natl Acad Sci U S A ; 112(40): 12420-5, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392558

RESUMEN

Regulated degradation of proteins by the proteasome is often critical to their function in dynamic cellular pathways. The molecular clock underlying mammalian circadian rhythms relies on the rhythmic expression and degradation of its core components. However, because the tools available for identifying the mechanisms underlying the degradation of a specific protein are limited, the mechanisms regulating clock protein degradation are only beginning to be elucidated. Here we describe a cell-based functional screening approach designed to quickly identify the ubiquitin E3 ligases that induce the degradation of potentially any protein of interest. We screened the nuclear hormone receptor RevErbα (Nr1d1), a key constituent of the mammalian circadian clock, for E3 ligases that regulate its stability and found Seven in absentia2 (Siah2) to be a key regulator of RevErbα stability. Previously implicated in hypoxia signaling, Siah2 overexpression destabilizes RevErbα/ß, and siRNA depletion of Siah2 stabilizes endogenous RevErbα. Moreover, Siah2 depletion delays circadian degradation of RevErbα and lengthens period length. These results demonstrate the utility of functional screening approaches for identifying regulators of protein stability and reveal Siah2 as a previously unidentified circadian clockwork regulator that mediates circadian RevErbα turnover.


Asunto(s)
Relojes Circadianos/genética , Proteínas Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Ratones , Microscopía Fluorescente , Proteínas Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteolisis , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Biol Rhythms ; 29(4): 277-87, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25238856

RESUMEN

The circadian clock generates daily cycles of gene expression that regulate physiological processes. The liver plays an important role in xenobiotic metabolism and also has been shown to possess its own cell-based clock. The liver clock is synchronized by the master clock in the brain, and a portion of rhythmic gene expression can be driven by behavior of the organism as a whole even when the hepatic clock is suppressed. So far, however, there is relatively little evidence indicating whether the liver clock is functionally important in modulating xenobiotic metabolism. Thus, mice lacking circadian clock function in the whole body or specifically in liver were challenged with pentobarbital and acetaminophen, and pentobarbital sleep time (PBST) and acetaminophen toxicity, respectively, was assessed at different times of day in mutant and control mice. The results suggest that the liver clock is essential for rhythmic changes in xenobiotic detoxification. Surprisingly, it seems that the way in which the clock is disrupted determines the rate of xenobiotic metabolism in the liver. CLOCK-deficient mice are remarkably resistant to acetaminophen and exhibit a longer PBST, while PERIOD-deficient mice have a short PBST. These results indicate an essential role of the tissue-intrinsic peripheral circadian oscillator in the liver in regulating xenobiotic metabolism.


Asunto(s)
Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Hígado/metabolismo , Hígado/fisiología , Xenobióticos/metabolismo , Acetaminofén/farmacología , Animales , Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Pentobarbital/farmacología , Periodicidad
17.
J Biol Rhythms ; 26(5): 390-401, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21921293

RESUMEN

Mice lacking the CLOCK protein have a relatively subtle circadian phenotype, including a slightly shorter period in constant darkness, differences in phase resetting after 4-hour light pulses in the early and late night, and a variably advanced phase angle of entrainment in a light-dark (LD) cycle. The present series of experiments was conducted to more fully characterize the circadian phenotype of Clock(-/-) mice under various lighting conditions. A phase-response curve (PRC) to 4-hour light pulses in free-running mice was conducted; the results confirm that Clock(-/-) mice exhibit very large phase advances after 4-hour light pulses in the late subjective night but have relatively normal responses to light at other phases. The abnormal shape of the PRC to light may explain the tendency of CLOCK-deficient mice to begin activity before lights-out when housed in a 12-hour light:12-hour dark lighting schedule. To assess this relationship further, Clock(-/-) and wild-type control mice were entrained to skeleton lighting cycles (1L:23D and 1L:10D:1L:12D). Comparing entrainment under the 2 types of skeleton photoperiods revealed that exposure to 1-hour light in the morning leads to a phase advance of activity onset (expressed the following afternoon) in Clock(-/-) mice but not in the controls. Constant light typically causes an intensity-dependent increase in circadian period in mice, but this did not occur in CLOCK-deficient mice. The failure of Clock(-/-) mice to respond to the period-lengthening effect of constant light likely results from the increased functional impact of light falling in the phase advance zone of the PRC. Collectively, these experiments reveal that alterations in the response of CLOCK-deficient mice to light in several paradigms are likely due to an imbalance in the shape of the PRC to light.


Asunto(s)
Proteínas CLOCK/deficiencia , Ritmo Circadiano/fisiología , Actividad Motora/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas CLOCK/genética , Femenino , Masculino , Ratones , Actividad Motora/efectos de la radiación , Proteínas del Tejido Nervioso/fisiología , Estimulación Luminosa , Fotoperiodo
18.
Dev Cell ; 20(2): 144-5, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21316582

RESUMEN

CRY1 is essential for normal circadian clock function, but its transcriptional regulation by the clock has not been considered an important feature for its function. However, reporting in Cell, Ukai-Tadenuma et al. (2011) now show that rhythmic Cry1 expression in the early night is critical for clock function.

19.
Mol Cell Biol ; 29(14): 3853-66, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19414593

RESUMEN

Both casein kinase 1 delta (CK1delta) and epsilon (CK1epsilon) phosphorylate core clock proteins of the mammalian circadian oscillator. To assess the roles of CK1delta and CK1epsilon in the circadian clock mechanism, we generated mice in which the genes encoding these proteins (Csnk1d and Csnk1e, respectively) could be disrupted using the Cre-loxP system. Cre-mediated excision of the floxed exon 2 from Csnk1d led to in-frame splicing and production of a deletion mutant protein (CK1delta(Delta2)). This product is nonfunctional. Mice homozygous for the allele lacking exon 2 die in the perinatal period, so we generated mice with liver-specific disruption of CK1delta. In livers from these mice, daytime levels of nuclear PER proteins, and PER-CRY-CLOCK complexes were elevated. In vitro, the half-life of PER2 was increased by approximately 20%, and the period of PER2::luciferase bioluminescence rhythms was 2 h longer than in controls. Fibroblast cultures from CK1delta-deficient embryos also had long-period rhythms. In contrast, disruption of the gene encoding CK1epsilon did not alter these circadian endpoints. These results reveal important functional differences between CK1delta and CK1epsilon: CK1delta plays an unexpectedly important role in maintaining the 24-h circadian cycle length.


Asunto(s)
Quinasa Idelta de la Caseína/fisiología , Ritmo Circadiano/fisiología , Animales , Secuencia de Bases , Proteínas CLOCK , Caseína Cinasa 1 épsilon/deficiencia , Caseína Cinasa 1 épsilon/genética , Caseína Cinasa 1 épsilon/fisiología , Quinasa Idelta de la Caseína/deficiencia , Quinasa Idelta de la Caseína/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Ritmo Circadiano/genética , Criptocromos , Cartilla de ADN/genética , Femenino , Fibroblastos/metabolismo , Flavoproteínas/metabolismo , Semivida , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
20.
J Genet ; 87(5): 437-46, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19147932

RESUMEN

A functional mouse CLOCK protein has long been thought to be essential for mammalian circadian clockwork function, based mainly on studies of mice bearing a dominant negative, antimorphic mutation in the Clock gene. However, new discoveries using recently developed Clock-null mutant mice have shaken up this view. In this review, I discuss how this recent work impacts and alters the previous view of the role of CLOCK in the mouse circadian clockwork.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Ratones/genética , Transactivadores/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas CLOCK , Regulación de la Expresión Génica/fisiología , Humanos , Ratones/fisiología , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Transactivadores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA