Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3311-3324, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38212130

RESUMEN

Species transport in thin-film Nafion heavily influences proton-exchange membrane (PEMFC) performance, particularly in low-platinum-loaded cells. Literature suggests that phase-segregated nanostructures in hydrated Nafion thin films can reduce species mobility and increase transport losses in cathode catalyst layers. However, these structures have primarily been observed at silicon-Nafion interfaces rather than at more relevant material (e.g., Pt and carbon black) interfaces. In this work, we use neutron reflectometry and X-ray photoelectron spectroscopy to investigate carbon-supported Nafion thin films. Measurements were taken in humidified environments for Nafion thin films (≈30-80 nm) on four different carbon substrates. Results show a variety of interfacial morphologies in carbon-supported Nafion. Differences in carbon samples' roughness, surface chemistry, and hydrophilicity suggest that thin-film Nafion phase segregation is impacted by multiple substrate characteristics. For instance, hydrophilic substrates with smooth surfaces correlate with a high likelihood of lamellar phase segregation parallel to the substrate. When present, the lamellar structures are less pronounced than those observed at silicon oxide interfaces. Local oscillations in water volume fraction for the lamellae were less severe, and the lamellae were thinner and were not observed when the water was removed, all in contrast to Nafion-silicon interfaces. For hydrophobic and rough samples, phase segregation was more isotropic rather than lamellar. Results suggest that Nafion in PEMFC catalyst layers is less influenced by the interface compared with thin films on silicon. Despite this, our results demonstrate that neutron reflectometry measurements of silicon-Nafion interfaces are valuable for PEMFC performance predictions, as water uptake in the majority Nafion layers (i.e., the uniformly hydrated region beyond the lamellar region) trends similarly with thickness, regardless of support material.

2.
J Chem Phys ; 153(19): 194701, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33218247

RESUMEN

Electrodeposition and stripping are fundamental electrochemical processes for metals and have gained importance in rechargeable Li-ion batteries due to lithium metal electrodes. The electrode kinetics associated with lithium metal electrodeposition and stripping is crucial in determining the performance at fast discharge and charge, which is important for electric vertical takeoff and landing (eVTOL) aircraft and electric vehicles (EV). In this work, we show the use of Marcus-Hush-Chidsey (MHC) kinetics to accurately predict the Tafel curve data from the work of Boyle et al. [ACS Energy Lett. 5(3), 701 (2020)]. We discuss the differences in predictions of reorganization energies from the Marcus-Hush and the MHC models for lithium metal electrodes in four solvents. The MHC kinetic model is implemented and open-sourced within Cantera. Using the reaction kinetic model in a pseudo-2D battery model with a lithium anode paired with a LiFePO4 cathode, we show the importance of accounting for the MHC kinetics and compare it to the use of Butler-Volmer and Marcus-Hush kinetic models. We find significant deviation in the limiting currents associated with reaction kinetics for the three different rate laws for conditions of fast charge and discharge relevant for eVTOL and EV, respectively.

3.
Nano Lett ; 20(11): 8081-8088, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125240

RESUMEN

Nanoparticle silicon-graphite composite electrodes are a viable way to advance the cycle life and energy density of lithium-ion batteries. However, characterization of composite electrode architectures is complicated by the heterogeneous mixture of electrode components and nanoscale diameter of particles, which falls beneath the lateral and depth resolution of most laboratory-based instruments. In this work, we report an original laboratory-based scanning probe microscopy approach to investigate composite electrode microstructures with nanometer-scale resolution via contrast in the electronic properties of electrode components. Applying this technique to silicon-based composite anodes demonstrates that graphite, SiOx nanoparticles, carbon black, and LiPAA binder are all readily distinguished by their intrinsic electronic properties, with measured electronic resistivity closely matching their known material properties. Resolution is demonstrated by identification of individual nanoparticles as small as ∼20 nm. This technique presents future utility in multiscale characterization to better understand particle dispersion, localized lithiation, and degradation processes in composite electrodes for lithium-ion batteries.

4.
Membranes (Basel) ; 9(7)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266218

RESUMEN

Membrane electrode assemblies (MEA) based on proton-conducting electrolyte membranes offer opportunities for the electrochemical compression of hydrogen. Mechanical hydrogen compression, which is more-mature technology, can suffer from low reliability, noise, and maintenance costs. Proton-conducting electrolyte membranes may be polymers (e.g., Nafion) or protonic-ceramics (e.g., yttrium-doped barium zirconates). Using a thermodynamics-based analysis, the paper explores technology implications for these two membrane types. The operating temperature has a dominant influence on the technology, with polymers needing low-temperature and protonic-ceramics needing elevated temperatures. Polymer membranes usually require pure hydrogen feed streams, but can compress H 2 efficiently. Reactors based on protonic-ceramics can effectively integrate steam reforming, hydrogen separation, and electrochemical compression. However, because of the high temperature (e.g., 600 ° C) needed to enable viable proton conductivity, the efficiency of protonic-ceramic compression is significantly lower than that of polymer-membrane compression. The thermodynamics analysis suggests significant benefits associated with systems that combine protonic-ceramic reactors to reform fuels and deliver lightly compressed H 2 (e.g., 5 bar) to an electrochemical compressor using a polymer electrolyte to compress to very high pressure.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32831460

RESUMEN

The solid electrolyte interphase (SEI) remains a central challenge to lithium-ion battery durability, in part due to poor understanding of the basic chemistry responsible for its formation and evolution. In this study, the SEI on a non-intercalating tungsten anode is measured by operando neutron reflectometry and quartz crystal microbalance. A dual-layer SEI is observed, with a 3.7 nm thick inner layer and a 15.4 nm thick outer layer. Such structures have been proposed in the literature, but have not been definitively observed via neutron reflectometry. The SEI mass per area was 1207.2 ng/cm2, and QCM provides insight into the SEI formation dynamics during a negative-going voltage sweep and its evolution over multiple cycles. Monte Carlo simulations identify SEI chemical compositions consistent with the combined measurements. The results are consistent with a primarily inorganic, dense inner layer and a primarily organic, porous outer layer, directly confirming structures proposed in the literature. Further refinement of techniques presented herein, coupled with additional complementary measurements and simulations, can give quantitative insight into SEI formation and evolution as a function of battery materials and cycling conditions. This, in turn, will enable scientifically-guided design of durable, conductive SEI layers for Li-ion batteries for a range of applications.

6.
Soft Matter ; 10(31): 5763-76, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24981163

RESUMEN

Neutron reflectometry analysis methods for under-determined, multi-layered structures are developed and used to determine the composition depth profile in cases where the structure is not known a priori. These methods, including statistical methods, sophisticated fitting routines, and coupling multiple data sets, are applied to hydrated and dehydrated Nafion nano-scaled films with thicknesses comparable to those found coating electrode particles in fuel cell catalyst layers. These results confirm the lamellar structure previously observed on hydrophilic substrates, and demonstrate that for hydrated films they can accurately be described as layers rich in both water and sulfonate groups alternating with water-poor layers containing an excess of fluorocarbon groups. The thickness of these layers increases slightly and the amplitude of the water volume fraction oscillation exponentially decreases away from the hydrophilic interface. For dehydrated films, the composition oscillations die out more rapidly. The Nafion-SiO2 substrate interface contains a partial monolayer of sulfonate groups bonded to the substrate and a large excess of water compared to that expected by the water-to-sulfonate ratio, λ, observed throughout the rest of the film. Films that were made thin enough to truncate this lamellar region showed a depth profile nearly identical to thicker films, indicating that there are no confinement or surface effects altering the structure. Comparing the SLD profile measured for films dried at 60 °C to modeled composition profiles derived by removing water from the hydrated lamellae suggests incomplete re-mixing of the polymer groups upon dehydration, indicated limited polymer mobility in these Nafion thin films.

7.
Nat Mater ; 9(11): 944-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20871607

RESUMEN

Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy (XPS) analysis of electrochemical cells to ex situ investigations. Using a combination of ambient-pressure XPS and CeO(2-x)/YSZ/Pt single-chamber cells, we carry out in situ spectroscopy to probe oxidation states of all exposed surfaces in operational SOCs at 750 °C in 1 mbar reactant gases H(2) and H(2)O. Kinetic energy shifts of core-level photoelectron spectra provide a direct measure of the local surface potentials and a basis for calculating local overpotentials across exposed interfaces. The mixed ionic/electronic conducting CeO(2-x) electrodes undergo Ce(3+)/Ce(4+) oxidation-reduction changes with applied bias. The simultaneous measurements of local surface Ce oxidation states and electric potentials reveal the active ceria regions during H(2) electro-oxidation and H(2)O electrolysis. The active regions extend ~150 µm from the current collectors and are not limited by the three-phase-boundary interfaces associated with other SOC materials. The persistence of the Ce(3+)/Ce(4+) shifts in the ~150 µm active region suggests that the surface reaction kinetics and lateral electron transport on the thin ceria electrodes are co-limiting processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA