Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083807

RESUMEN

Relapse rates in high-risk neuroblastoma remain exceedingly high. The malignant cells that are responsible for relapse have not been identified, and mechanisms of therapy resistance remain poorly understood. Here, we used single nucleus RNA sequencing and bulk whole genome sequencing to identify and characterize the residual malignant persister cells that survive chemotherapy from a cohort of 20 matched diagnosis and definitive surgery tumor samples from patients treated with high-risk neuroblastoma induction chemotherapy. We show that persister cells share common mechanisms of chemotherapy escape including suppression of MYCN activity and activation of NF-κB signaling, the latter is further enhanced by cell-cell communication between the malignant cells and the tumor microenvironment. Overall, our work dissects the transcriptional landscape of cellular persistence in high-risk neuroblastoma and paves the way to the development of new therapeutic strategies to prevent disease relapse.

2.
Br J Cancer ; 131(1): 90-100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806726

RESUMEN

BACKGROUND: Intrinsic and extrinsic factors in the tumour microenvironment (TME) contribute to therapeutic resistance. Here we demonstrate that transforming growth factor (TGF)-ß1 produced in the TME increased drug resistance of neuroblastoma (NB) cells. METHODS: Human NB cell lines were tested in vitro for their sensitivity to Doxorubicin (DOX) and Etoposide (ETOP) in the presence of tumour-associated macrophages (TAM) and mesenchymal stromal cells/cancer-associated fibroblasts (MSC/CAF). These experiments were validated in xenotransplanted and primary tumour samples. RESULTS: Drug resistance was associated with an increased expression of efflux transporter and anti-apoptotic proteins. Upregulation was dependent on activation of nuclear factor (NF)-κB by TGF-ß-activated kinase (TAK1) and SMAD2. Resistance was reversed upon pharmacologic and genetic inhibitions of NF-κB, and TAK1/SMAD2. Interleukin-6, leukaemia inhibitory factor and oncostatin M were upregulated by this TGF-ß/TAK1/NF-κB/SMAD2 signalling pathway contributing to drug resistance via an autocrine loop activating STAT3. An analysis of xenotransplanted NB tumours revealed an increased presence of phospho (p)-NF-κB in tumours co-injected with MSC/CAF and TAM, and these tumours failed to respond to Etoposide but responded if treated with a TGF-ßR1/ALK5 inhibitor. Nuclear p-NF-κB was increased in patient-derived tumours rich in TME cells. CONCLUSIONS: The data provides a novel insight into a targetable mechanism of environment-mediated drug resistance.


Asunto(s)
Doxorrubicina , Resistencia a Antineoplásicos , FN-kappa B , Neuroblastoma , Factor de Crecimiento Transformador beta1 , Microambiente Tumoral , Humanos , Microambiente Tumoral/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , FN-kappa B/metabolismo , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Ratones , Etopósido/farmacología , Transducción de Señal/efectos de los fármacos , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Smad2/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Extracell Vesicles ; 12(5): e12326, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37194998

RESUMEN

The capture of tumour-derived extracellular vesicles (TEVs) by cells in the tumour microenvironment (TME) contributes to metastasis and notably to the formation of the pre-metastatic niche (PMN). However, due to the challenges associated with modelling release of small EVs in vivo, the kinetics of PMN formation in response to endogenously released TEVs have not been examined. Here, we have studied the endogenous release of TEVs in mice orthotopically implanted with metastatic human melanoma (MEL) and neuroblastoma (NB) cells releasing GFP-tagged EVs (GFTEVs) and their capture by host cells to demonstrate the active contribution of TEVs to metastasis. Human GFTEVs captured by mouse macrophages in vitro resulted in transfer of GFP vesicles and the human exosomal miR-1246. Mice orthotopically implanted with MEL or NB cells showed the presence of TEVs in the blood between 5 and 28 days after implantation. Moreover, kinetic analysis of TEV capture by resident cells relative to the arrival and outgrowth of TEV-producing tumour cells in metastatic organs demonstrated that the capture of TEVs by lung and liver cells precedes the homing of metastatic tumour cells, consistent with the critical roles of TEVs in PMN formation. Importantly, TEV capture at future sites of metastasis was associated with the transfer of miR-1246 to lung macrophages, liver macrophages, and stellate cells. This is the first demonstration that the capture of endogenously released TEVs is organotropic as demonstrated by the presence of TEV-capturing cells only in metastatic organs and their absence in non-metastatic organs. The capture of TEVs in the PMN induced dynamic changes in inflammatory gene expression which evolved to a pro-tumorigenic reaction as the niche progressed to the metastatic state. Thus, our work describes a novel approach to TEV tracking in vivo that provides additional insights into their role in the earliest stages of metastatic progression.


Asunto(s)
Vesículas Extracelulares , Melanoma , MicroARNs , Humanos , Animales , Ratones , Vesículas Extracelulares/metabolismo , Cinética , MicroARNs/metabolismo , Melanoma/metabolismo , Inflamación/metabolismo , Microambiente Tumoral
4.
Oncoimmunology ; 11(1): 2146860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479153

RESUMEN

Tumor-associated macrophages (TAM) and cancer-associated fibroblasts (CAF) and their precursor mesenchymal stromal cells (MSC) are often detected together in tumors, but how they cooperate is not well understood. Here, we show that TAM and CAF are the most abundant nonmalignant cells and are present together in untreated human neuroblastoma (NB) tumors that are also poorly infiltrated with T and natural killer (NK) cells. We then show that MSC and CAF-MSC harvested from NB tumors protected human monocytes (MN) from spontaneous apoptosis in an interleukin (IL)-6 dependent mechanism. The interactions of MN and MSC with NB cells resulted in a significant induction or increase in the expression of several pro-tumorigenic cytokines/chemokines (TGF-ß1, MCP-1, IL-6, IL-8, and IL-4) but not of anti-tumorigenic cytokines (TNF-α, IL-12) by MN or MSC, while also inducing cytokine expression in quiescent NB cells. We then identified a TGF-ß1/IL-6 pathway where TGF-ß1 stimulated the expression of IL-6 in NB cells and MSC, promoting TAM survival. Evidence for the contribution of TAM and MSC to the activation of this pathway was then provided in xenotransplanted NB tumors and patients with primary tumors by demonstrating a direct correlation between the presence of CAF and p-SMAD2 and p-STAT3. The data highlight a new mechanism of interaction between TAM and CAF supporting their pro-tumorigenic function in cancer.


Asunto(s)
Fibroblastos , Interleucina-6 , Macrófagos , Neuroblastoma , Factor de Crecimiento Transformador beta1 , Humanos , Neuroblastoma/inmunología , Fibroblastos/inmunología , Macrófagos/inmunología , Animales
5.
Cancers (Basel) ; 12(11)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114328

RESUMEN

The tumor microenvironment (TME) plays a critical role in tumor progression. Among its multiple components are cancer-associated fibroblasts (CAFs) that are the main suppliers of extracellular matrix molecules and important contributors to inflammation. As a source of growth factors, cytokines, chemokines and other regulatory molecules, they participate in cancer progression, metastasis, angiogenesis, immune cell reprogramming and therapeutic resistance. Nevertheless, their role is not fully understood, and is sometimes controversial due to their heterogeneity. CAFs are heterogeneous in their origin, phenotype, function and presence within tumors. As a result, strategies to target CAFs in cancer therapy have been hampered by the difficulties in better defining the various populations of CAFs and by the lack of clear recognition of their specific function in cancer progression. This review discusses how a greater understanding of the heterogeneous nature of CAFs could lead to better approaches aimed at their use or at their targeting in the treatment of cancer.

6.
Cancers (Basel) ; 12(10)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050533

RESUMEN

The contribution of the tumor microenvironment (TME) to cancer progression has been well recognized in recent decades. As cancer therapeutic strategies are increasingly precise and include immunotherapies, knowledge of the nature and function of the TME in a tumor becomes essential. Our understanding of the TME in neuroblastoma (NB), the second most common solid tumor in children, has significantly progressed from an initial focus on its Schwannian component to a better awareness of its complex nature, which includes not only immune but also non-immune cells such as cancer-associated fibroblasts (CAFs), the contribution of which to inflammation and interaction with tumor-associated macrophages (TAMs) is now recognized. Recent studies on the TME landscape of NB tumors also suggest significant differences between MYCN-amplified (MYCN-A) and non-amplified (MYCN-NA) tumors, in their content in stromal and inflammatory cells and their immunosuppressive activity. Extracellular vesicles (EVs) released by cells in the TME and microRNAs (miRs) present in their cargo could play important roles in the communication between NB cells and the TME. This review article discusses these new aspects of the TME in NB and the impact that information on the TME landscape in NB will have in the design of precise, biomarker-integrated clinical trials.

7.
Clin Cancer Res ; 25(15): 4761-4774, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31068371

RESUMEN

PURPOSE: We determined whether elimination of CD105+ cells in the tumor microenvironment (TME) with anti-CD105 antibodies enhanced anti-disialoganglioside (GD2) antibody dinutuximab therapy of neuroblastoma when combined with activated natural killer (aNK) cells. EXPERIMENTAL DESIGN: The effect of MSCs and monocytes on antibody-dependent cellular cytotoxicity (ADCC) mediated by dinutuximab with aNK cells against neuroblastoma cells was determined in vitro. ADCC with anti-CD105 mAb TRC105 and aNK cells against MSCs, monocytes, and endothelial cells, which express CD105, was evaluated. Anti-neuroblastoma activity in immunodeficient NSG mice of dinutuximab with aNK cells without or with anti-CD105 mAbs was determined using neuroblastoma cell lines and a patient-derived xenograft. RESULTS: ADCC mediated by dinutuximab with aNK cells against neuroblastoma cells in vitro was suppressed by addition of MSCs and monocytes, and dinutuximab with aNK cells was less effective against neuroblastomas formed with coinjected MSCs and monocytes in NSG mice than against those formed by tumor cells alone. Anti-CD105 antibody TRC105 with aNK cells mediated ADCC against MSCs, monocytes, and endothelial cells. Neuroblastomas formed in NSG mice by two neuroblastoma cell lines or a patient-derived xenograft coinjected with MSCs and monocytes were most effectively treated with dinutuximab and aNK cells when anti-human (TRC105) and anti-mouse (M1043) CD105 antibodies were added, which depleted human MSCs and murine endothelial cells and macrophages from the TME. CONCLUSIONS: Immunotherapy of neuroblastoma with anti-GD2 antibody dinutuximab and aNK cells is suppressed by CD105+ cells in the TME, but suppression is overcome by adding anti-CD105 antibodies to eliminate CD105+ cells.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antineoplásicos/farmacología , Endoglina/antagonistas & inhibidores , Gangliósidos/antagonistas & inhibidores , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neuroblastoma/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Endoglina/inmunología , Gangliósidos/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neuroblastoma/inmunología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 8(53): 91516-91529, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207662

RESUMEN

Tumor-associated macrophages (TAMs) are strongly associated with poor survival in neuroblastomas that lack MYCN amplification. To study TAM action in neuroblastomas, we used a novel murine model of spontaneous neuroblastoma lacking MYCN amplification, and observed recruitment and polarization of TAMs, which in turn enhanced neuroblastoma proliferation and growth. In both murine and human neuroblastoma cells, we found that TAMs increased STAT3 activation in neuroblastoma cells and transcriptionally up-regulated the MYC oncogene. Analysis of human neuroblastoma tumor specimens revealed that MYC up-regulation correlates with markers of TAM infiltration. In an IL6ko neuroblastoma model, the absence of IL-6 protein had no effect on tumor development and prevented neither STAT3 activation nor MYC up-regulation. In contrast, inhibition of JAK-STAT activation using AZD1480 or the clinically admissible inhibitor ruxolitinib significantly reduced TAM-mediated growth of neuroblastomas implanted subcutaneously in NOD scid gamma mice. Our results point to a unique mechanism in which TAMs promote tumor cells that lack amplification of an oncogene common to the malignancy by up-regulating transcriptional expression of a distinct oncogene from the same gene family, and underscore the role of IL-6-independent activation of STAT3 in this mechanism. Amplification of MYCN or constitutive up-regulation of MYC protein is observed in approximately half of high-risk tumors; our findings indicate a novel role of TAMs as inducers of MYC expression in neuroblastomas lacking independent oncogene activation.

9.
J Vis Exp ; (129)2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29286360

RESUMEN

siRNA and shRNA-mediated knock down (KD) methods of regulating gene expression are invaluable tools for understanding gene and protein function. However, in the case that the KD of the protein of interest has a lethal effect on cells or the anticipated effect of the KD is time-dependent, unconditional KD methods are not appropriate. Conditional systems are more suitable in these cases and have been the subject of much interest. These include Ecdysone-inducible overexpression systems, Cytochrome P-450 induction system1, and the tetracycline regulated gene expression systems. The tetracycline regulated gene expression system enables reversible control over protein expression by induction of shRNA expression in the presence of tetracycline. In this protocol, we present an experimental design using functional Tet-ON system in human cancer cell lines for conditional regulation of gene expression. We then demonstrate the use of this system in the study of tumor cell-monocyte interaction.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Técnicas de Silenciamiento del Gen/métodos , Macrófagos/patología , Monocitos/patología , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Neoplasias del Colon/patología , Femenino , Células HCT116 , Humanos , ARN Interferente Pequeño/genética , Microambiente Tumoral
10.
Mol Cancer Ther ; 16(11): 2516-2527, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28716816

RESUMEN

Drug resistance is a major barrier for the development of effective and durable cancer therapies. Overcoming this challenge requires further defining the cellular and molecular mechanisms underlying drug resistance, both acquired and environment-mediated drug resistance (EMDR). Here, using neuroblastoma (NB), a childhood cancer with high incidence of recurrence due to resistance to chemotherapy, as a model we show that human bone marrow-mesenchymal stromal cells induce tumor expression of sphingosine-1-phosphate receptor-1 (S1PR1), leading to their resistance to chemotherapy. Targeting S1PR1 by shRNA markedly enhances etoposide-induced apoptosis in NB cells and abrogates EMDR, while overexpression of S1PR1 significantly protects NB cells from multidrug-induced apoptosis via activating JAK-STAT3 signaling. Elevated S1PR1 expression and STAT3 activation are also observed in human NB cells with acquired resistance to etoposide. We show in vitro and in human NB xenograft models that treatment with FTY720, an FDA-approved drug and antagonist of S1PR1, dramatically sensitizes drug-resistant cells to etoposide. In summary, we identify S1PR1 as a critical target for reducing both EMDR and acquired chemoresistance in NB. Mol Cancer Ther; 16(11); 2516-27. ©2017 AACR.


Asunto(s)
Etopósido/administración & dosificación , Interacción Gen-Ambiente , Neuroblastoma/tratamiento farmacológico , Receptores de Lisoesfingolípidos/genética , Factor de Transcripción STAT3/genética , Animales , Apoptosis/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Clorhidrato de Fingolimod/administración & dosificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neuroblastoma/genética , Neuroblastoma/patología , ARN Interferente Pequeño , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Res ; 77(18): 5142-5157, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28687621

RESUMEN

Cancer-associated fibroblasts (CAF) have been suggested to originate from mesenchymal stromal cells (MSC), but their relationship with MSCs is not clear. Here, we have isolated from primary human neuroblastoma tumors a population of αFAP- and FSP-1-expressing CAFs that share phenotypic and functional characteristics with bone marrow-derived MSCs (BM-MSC). Analysis of human neuroblastoma tumors also confirmed the presence of αFAP- and FSP-1-positive cells in the tumor stroma, and their presence correlated with that of M2 tumor-associated macrophages. These cells (designated CAF-MSCs) enhanced in vitro neuroblastoma cell proliferation, survival, and resistance to chemotherapy and stimulated neuroblastoma tumor engraftment and growth in immunodeficient mice, indicating an effect independent of the immune system. The protumorigenic activity of MSCs in vitro and in xenografted mice was dependent on the coactivation of JAK2/STAT3 and MEK/ERK1/2 in neuroblastoma cells. In a mouse model of orthotopically implanted neuroblastoma cells, inhibition of JAK2/STAT3 and MEK/ERK/1/2 by ruxolitinib and trametinib potentiated tumor response to etoposide and increased overall survival. These data point to a new type of protumorigenic CAF in the tumor microenvironment of neuroblastoma and to STAT3 and ERK1/2 as mediators of their activity. Cancer Res; 77(18); 5142-57. ©2017 AACR.


Asunto(s)
Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Neuroblastoma/patología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Humanos , Janus Quinasa 2/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Nitrilos , Pirazoles/farmacología , Piridonas/farmacología , Pirimidinas , Pirimidinonas/farmacología , Factor de Transcripción STAT3/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Extracell Vesicles ; 6(1): 1332941, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717423

RESUMEN

The bone marrow (BM) niche is a microenvironment promoting survival, dormancy and therapeutic resistance in tumor cells. Central to this function are mesenchymal stromal cells (MSCs). Here, using neuroblastoma (NB) as a model, we demonstrate that NB cells release an extracellular vesicle (EVs) whose protein cargo is enriched in exosomal proteins but lacks cytokines and chemokines. Using three different purification methods, we then demonstrate that NB-derived exosomes were captured by MSCs and induced the production of pro-tumorigenic cytokines and chemokines, including interleukin-6 (IL-6), IL-8/CXCL8, vascular endothelial cell growth factor and monocyte-chemotactic protein-1, with exosomes prepared by size exclusion chromatography having the highest activity. We found no correlation between the IL-6 and IL-8/CXCL8 stimulatory activity of exosomes from eight NB cell lines and their origin, degree of MYCN amplification, drug resistance and disease status. We then demonstrate that the uptake of NB exosomes by MSCs was associated with a rapid increase in ERK1/2 and AKT activation, and that blocking ERK1/2 but not AKT activation inhibited the IL-6 and IL-8/CXCL8 production by MSCs without affecting exosome uptake. Thus, we describe a new mechanism by which NB cells induce in MSCs an inflammatory reaction that contributes to a favorable microenvironment in the BM.

13.
Artículo en Inglés | MEDLINE | ID: mdl-28629204

RESUMEN

While several studies have investigated maternal exposures as risk factors for oral clefts, few have examined paternal factors. We conducted an international multi-centered case-control study to better understand paternal risk exposures for oral clefts (cases = 392 and controls = 234). Participants were recruited from local hospitals and oral cleft repair surgical missions in Vietnam, the Philippines, Honduras, and Morocco. Questionnaires were administered to fathers and mothers separately to elicit risk factor and family history data. Associations between paternal exposures and risk of clefts were assessed using logistic regression adjusting for potential confounders. A father's personal/family history of clefts was associated with significantly increased risk (adjusted OR: 4.77; 95% CI: 2.41-9.45). No other significant associations were identified for other suspected risk factors, including education (none/primary school v. university adjusted OR: 1.29; 95% CI: 0.74-2.24), advanced paternal age (5-year adjusted OR: 0.98; 95% CI: 0.84-1.16), or pre-pregnancy tobacco use (adjusted OR: 0.96; 95% CI: 0.67-1.37). Although sample size was limited, significantly decreased risks were observed for fathers with selected occupations. Further research is needed to investigate paternal environmental exposures as cleft risk factors.


Asunto(s)
Labio Leporino/epidemiología , Fisura del Paladar/epidemiología , Exposición Paterna/efectos adversos , Estudios de Casos y Controles , Preescolar , Labio Leporino/etiología , Fisura del Paladar/etiología , Honduras/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Marruecos/epidemiología , Filipinas/epidemiología , Factores de Riesgo , Factores Socioeconómicos , Vietnam/epidemiología
14.
Cancer Res ; 77(5): 1051-1059, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28209610

RESUMEN

Over the past 10 years, the Tumor Microenvironment Network (TMEN), supported by the NCI (Bethesda, MD), has promoted collaborative research with the explicit goal of fostering multi-institutional and transdisciplinary groups that are capable of addressing complex issues involving the tumor microenvironment. The main goal of the TMEN was to generate novel information about the dynamic complexity of tumor-host interactions in different organ systems with emphasis on using human tissues and supplemented by experimental models. As this initiative comes to a close, members of the TMEN took time to examine what has been accomplished by the Network and importantly to identify the challenges and opportunities ahead. This consensus document summarizes for the broader scientific community discussions that occurred at the two final meetings of the TMEN in 2015 and 2016. Cancer Res; 77(5); 1051-9. ©2017 AACR.


Asunto(s)
Neoplasias/patología , Microambiente Tumoral/fisiología , Humanos
16.
Cancer Lett ; 380(1): 304-14, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-26597947

RESUMEN

Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neuroblastoma/metabolismo , Microambiente Tumoral , Animales , Biomarcadores de Tumor/genética , Comunicación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/terapia , Transducción de Señal
17.
Cancer Res ; 75(15): 2969-74, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26180080

RESUMEN

Despite its function as an inhibitor of urokinase and tissue-type plasminogen activator (PA), PA inhibitor-1 (PAI-1) has a paradoxical protumorigenic role in cancer, promoting angiogenesis and tumor cell survival. In this review, we summarize preclinical evidence in support of the protumorigenic function of PAI-1 that has led to the testing of small-molecule PAI-1 inhibitors, initially developed as antithrombotic agents, in animal models of cancer. The review discusses the challenges and the opportunities that lay ahead to the development of efficacious and nontoxic PAI-1 inhibitors as anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida/métodos , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Inhibidor 1 de Activador Plasminogénico/fisiología
18.
PLoS One ; 10(7): e0133786, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26207899

RESUMEN

Numerous studies have shown a paradoxical positive correlation between elevated levels of plasminogen activator inhibitior-1 (PAI-1) in tumors and blood of cancer patients with poor clinical outcome, suggesting that PAI-1 could be a therapeutic target. Here we tested two orally bioavailable small molecule inhibitors of PAI-1 (TM5275 and TM5441) for their efficacy in pre-clinical models of cancer. We demonstrated that these inhibitors decreased cell viability in several human cancer cell lines with an IC50 in the 9.7 to 60.3 µM range and induced intrinsic apoptosis at concentrations of 50 µM. In vivo, oral administration of TM5441 (20 mg/kg daily) to HT1080 and HCT116 xenotransplanted mice increased tumor cell apoptosis and had a significant disruptive effect on the tumor vasculature that was associated with a decrease in tumor growth and an increase in survival that, however, were not statistically significant. Pharmacokinetics studies indicated an average peak plasma concentration of 11.4 µM one hour after oral administration and undetectable levels 23 hours after administration. The effect on tumor vasculature in vivo was further examined in endothelial cells (EC) in vitro and this analysis indicated that both TM5275 and TM5441 inhibited EC branching in a 3D Matrigel assay at concentrations where they had little effect on EC apoptosis. These studies bring novel insight on the activity of PAI-1 inhibitors and provide important information for the future design of inhibitors targeting PAI-1 as therapeutic agents in cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Piperazinas/farmacología , Inhibidor 1 de Activador Plasminogénico/metabolismo , para-Aminobenzoatos/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ratones
19.
Int J Cancer ; 137(4): 797-809, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25648303

RESUMEN

The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of BM-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven toward osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA- mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated cocultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis.


Asunto(s)
Diferenciación Celular/genética , Activación de Linfocitos/genética , Células Madre Mesenquimatosas/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Proteína Morfogenética Ósea 4/administración & dosificación , Línea Celular , Proliferación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Neuroblastoma/metabolismo , Osteoblastos/metabolismo , Osteoprotegerina/biosíntesis , ARN Mensajero/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
20.
Cancer Res ; 74(21): 5999-6009, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25164011

RESUMEN

Heparan sulfate proteoglycans (HSPG) play a critical role in the interaction of tumor cells and their microenvironment. HSPG activity is dictated by sulfation patterns controlled by sulfotransferases, which add sulfate groups, and sulfatases (Sulf), which remove 6-O-sulfates. Here, we report altered expression of these enzymes in human neuroblastoma cells with higher levels of Sulf-2 expression, a specific feature of MYCN-amplified cells (MYCN-A cells) that represent a particularly aggressive subclass. Sulf-2 overexpression in neuroblastoma cells lacking MYCN amplification (MYCN-NA cells) increased their in vitro survival. Mechanistic investigations revealed evidence of a link between Sulf-2 expression and MYCN pathogenicity in vitro and in vivo. Analysis of Sulf-2 protein expression in 65 human neuroblastoma tumors demonstrated a higher level of Sulf-2 expression in MYCN-A tumors than in MYCN-NA tumors. In two different patient cohorts, we confirmed the association in expression patterns of Sulf-2 and MYCN and determined that Sulf-2 overexpression predicted poor outcomes in a nonindependent manner with MYCN. Our findings define Sulf-2 as a novel positive regulator of neuroblastoma pathogenicity that contributes to MYCN oncogenicity. Cancer Res; 74(21); 5999-6009. ©2014 AACR.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Neuroblastoma/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Sulfotransferasas/biosíntesis , Línea Celular Tumoral , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Transducción de Señal/genética , Sulfatasas , Sulfotransferasas/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA