Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
bioRxiv ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38854053

Background: Epigenetic regulation of gene expression and host defense is well established in microbial communities, with dozens of DNA modifications comprising the epigenomes of prokaryotes and bacteriophage. Phosphorothioation (PT) of DNA, in which a chemically-reactive sulfur atom replaces a non-bridging oxygen in the sugar-phosphate backbone, is catalyzed by dnd and ssp gene families widespread in bacteria and archaea. However, little is known about the role of PTs or other microbial epigenetic modifications in the human microbiome. Here we optimized and applied fecal DNA extraction, mass spectrometric, and metagenomics technologies to characterize the landscape and temporal dynamics of gut microbes possessing PT modifications. Results: Exploiting the nuclease-resistance of PTs, mass spectrometric analysis of limit digests of PT-containing DNA reveals PT dinucleotides as part of genomic consensus sequences, with 16 possible dinucleotide combinations. Analysis of mouse fecal DNA revealed a highly uniform spectrum of 11 PT dinucleotides in all littermates, with PTs estimated to occur in 5-10% of gut microbes. Though at similar levels, PT dinucleotides in fecal DNA from 11 healthy humans possessed signature combinations and levels of individual PTs. Comparison with a widely distributed microbial epigenetic mark, m6dA, suggested temporal dynamics consistent with expectations for gut microbial communities based on Taylor's Power Law. Application of PT-seq for site-specific metagenomic analysis of PT-containing bacteria in one fecal donor revealed the larger consensus sequences for the PT dinucleotides in Bacteroidota, Firmicutes, Actinobacteria, and Proteobacteria, which differed from unbiased metagenomics and suggested that the abundance of PT-containing bacteria did not simply mirror the spectrum of gut bacteria. PT-seq further revealed low abundance PT sites not detected as dinucleotides by mass spectrometry, attesting to the complementarity of the technologies. Conclusions: The results of our studies provide a benchmark for understanding the behavior of an abundant and chemically-reactive epigenetic mark in the human gut microbiome, with implications for inflammatory conditions of the gut.

2.
bioRxiv ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38895297

Among dozens of known epigenetic marks, naturally occurring phosphorothioate (PT) DNA modifications are unique in replacing a non-bridging phosphate oxygen with redox-active sulfur and function in prokaryotic restriction-modification and transcriptional regulation. Interest in PTs has grown due to the widespread distribution of the dnd, ssp , and brx genes among bacteria and archaea, as well as the discovery of PTs in 5-10% of gut microbes. Efforts to map PTs in complex microbiomes using existing next-generation and direct sequencing technologies have failed due to poor sensitivity. Here we developed PT-seq as a high-sensitivity method to quantitatively map PTs across genomes and metagenomically identify PT-containing microbes in complex genomic mixtures. Like other methods for mapping PTs in individual genomes, PT-seq exploits targeted DNA strand cleavage at PTs by iodine, followed by sequencing library construction using ligation or template switching approaches. However, PT-specific sequencing reads are dramatically increased by adding steps to heat denature the DNA, block pre-existing 3'-ends, fragment DNA after T-tailing, and enrich iodine-induced breaks using biotin-labeling and streptavidin beads capture. Iterative optimization of the sensitivity and specificity of PT-seq is demonstrated with individual bacteria and human fecal DNA.

3.
bioRxiv ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38895356

Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd , ssp , and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes. One-sentence Summary: Application of informatic, mass spectrometric, and sequencing-based mapping tools to human gut bacteria revealed new phosphorothioate epigenetic systems widespread in the gut microbiome.

4.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Article En | MEDLINE | ID: mdl-37843128

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


DNA Adducts , DNA , Animals , Female , Humans , Male , Rats , Chromatography, Liquid/methods , DNA/chemistry , DNA Adducts/genetics , Rodentia , Tandem Mass Spectrometry/methods
5.
Front Microbiol ; 13: 871937, 2022.
Article En | MEDLINE | ID: mdl-35531280

Bacterial DNA is subject to various modifications involved in gene regulation and defense against bacteriophage attacks. Phosphorothioate (PT) modifications are protective modifications in which the non-bridging oxygen in the DNA phosphate backbone is replaced with a sulfur atom. Here, we expand third-generation sequencing techniques to allow for the sequence-specific mapping of DNA modifications by demonstrating the application of Oxford Nanopore Technologies (ONT) and the ELIGOS software package for site-specific detection and characterization of PT modifications. The ONT/ELIGOS platform accurately detected PT modifications in a plasmid carrying synthetic PT modifications. Subsequently, studies were extended to the genome-wide mapping of PT modifications in the Salmonella enterica genomes within the wild-type strain and strains lacking the PT regulatory gene dndB (ΔdndB) or the PT synthetic gene dndC (ΔdndC). PT site-specific signatures were observed in the established motifs of GAAC/GTTC. The PT site locations were in close agreement with PT sites previously identified using the Nick-seq technique. Compared to the wild-type strain, the number of PT modifications are 1.8-fold higher in ΔdndB and 25-fold lower in ΔdndC, again consistent with known regulation of the dnd operon. These results demonstrate the suitability of the ONT platform for accurate detection and identification of the unusual PT backbone modifications in native genome sequences.

6.
Angew Chem Int Ed Engl ; 60(44): 23885-23893, 2021 10 25.
Article En | MEDLINE | ID: mdl-34339593

In this report, we perform structure validation of recently reported RNA phosphorothioate (PT) modifications, a new set of epitranscriptome marks found in bacteria and eukaryotes including humans. By comparing synthetic PT-containing diribonucleotides with native species in RNA hydrolysates by high-resolution mass spectrometry (MS), metabolic stable isotope labeling, and PT-specific iodine-desulfurization, we disprove the existence of PTs in RNA from E. coli, S. cerevisiae, human cell lines, and mouse brain. Furthermore, we discuss how an MS artifact led to the initial misidentification of 2'-O-methylated diribonucleotides as RNA phosphorothioates. To aid structure validation of new nucleic acid modifications, we present a detailed guideline for MS analysis of RNA hydrolysates, emphasizing how the chosen RNA hydrolysis protocol can be a decisive factor in discovering and quantifying RNA modifications in biological samples.


Escherichia coli/chemistry , Phosphorothioate Oligonucleotides/analysis , Saccharomyces cerevisiae/chemistry , Animals , Humans , Mass Spectrometry , Mice , Nucleic Acid Conformation
7.
Nat Biotechnol ; 39(8): 978-988, 2021 08.
Article En | MEDLINE | ID: mdl-33859402

Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.


MicroRNAs , Sequence Alignment/methods , Sequence Analysis, RNA/methods , Cell Line, Tumor , Gene Library , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics
8.
Biomolecules ; 10(11)2020 10 28.
Article En | MEDLINE | ID: mdl-33126637

DNA phosphorothioate (PT) modification is a novel modification that occurs on the DNA backbone, which refers to a non-bridging phosphate oxygen replaced by sulfur. This exclusive DNA modification widely distributes in bacteria but has not been found in eukaryotes to date. PT modification renders DNA nuclease tolerance and serves as a constitute element of bacterial restriction-modification (R-M) defensive system and more biological functions are awaiting exploration. Identification and quantification of the bacterial PT modifications are thus critical to better understanding their biological functions. This work describes three detailed methods derived from iodine-induced specific cleavage-an iodine-induced cleavage assay (ICA), a deep sequencing of iodine-induced cleavage at PT site (ICDS) and an iodine-induced cleavage PT sequencing (PT-IC-Seq)-for the investigation of PT modifications. Using these approaches, we have identified the presence of PT modifications and quantized the frequency of PT modifications in bacteria. These characterizations contributed to the high-resolution genomic mapping of PT modifications, in which the distribution of PT modification sites on the genome was marked accurately and the frequency of the specific modified sites was reliably obtained. Here, we provide time-saving and less labor-consuming methods for both of qualitative and quantitative analysis of genomic PT modifications. The application of these methodologies will offer great potential for better understanding the biology of the PT modifications and open the door to future further systematical study.


DNA, Bacterial/genetics , Genomics , Phosphorothioate Oligonucleotides/genetics , DNA, Bacterial/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Genome, Bacterial/drug effects , Genome, Bacterial/genetics , Iodine/pharmacology , Phosphates/metabolism , Phosphorothioate Oligonucleotides/chemistry , Sulfur/metabolism
9.
Nucleic Acids Res ; 48(12): 6715-6725, 2020 07 09.
Article En | MEDLINE | ID: mdl-32484547

DNA damage and epigenetic marks are well established to have profound influences on genome stability and cell phenotype, yet there are few technologies to obtain high-resolution genomic maps of the many types of chemical modifications of DNA. Here we present Nick-seq for quantitative, sensitive, and accurate mapping of DNA modifications at single-nucleotide resolution across genomes. Pre-existing breaks are first blocked and DNA modifications are then converted enzymatically or chemically to strand-breaks for both 3'-extension by nick-translation to produce nuclease-resistant oligonucleotides and 3'-terminal transferase tailing. Following library preparation and next generation sequencing, the complementary datasets are mined with a custom workflow to increase sensitivity, specificity and accuracy of the map. The utility of Nick-seq is demonstrated with genomic maps of site-specific endonuclease strand-breaks in purified DNA from Eschericia coli, phosphorothioate epigenetics in Salmonella enterica Cerro 87, and oxidation-induced abasic sites in DNA from E. coli treated with a sublethal dose of hydrogen peroxide. Nick-seq applicability is demonstrated with strategies for >25 types of DNA modification and damage.


DNA Damage/drug effects , Epigenesis, Genetic/genetics , Genome, Bacterial/genetics , Genomic Instability/drug effects , Chromosome Mapping , DNA/chemistry , DNA/drug effects , DNA Damage/genetics , Escherichia coli/genetics , Genome, Bacterial/drug effects , High-Throughput Nucleotide Sequencing , Hydrogen Peroxide/toxicity , Nucleotides/chemistry , Salmonella enterica/genetics , Sequence Analysis, DNA
10.
Biomolecules ; 10(2)2020 02 18.
Article En | MEDLINE | ID: mdl-32085421

Modifications found in the Anticodon Stem Loop (ASL) of tRNAs play important roles in regulating translational speed and accuracy. Threonylcarbamoyl adenosine (t6A37) and 5-methoxycarbonyl methyl-2-thiouridine (mcm5s2U34) are critical ASL modifications that have been linked to several human diseases. The model yeast Saccharomyces cerevisiae is viable despite the absence of both modifications, growth is however greatly impaired. The major observed consequence is a subsequent increase in protein aggregates and aberrant morphology. Proteomic analysis of the t6A-deficient strain (sua5 mutant) revealed a global mistranslation leading to protein aggregation without regard to physicochemical properties or t6A-dependent or biased codon usage in parent genes. However, loss of sua5 led to increased expression of soluble proteins for mitochondrial function, protein quality processing/trafficking, oxidative stress response, and energy homeostasis. These results point to a global function for t6A in protein homeostasis very similar to mcm5/s2U modifications.


DNA-Binding Proteins/genetics , Histone Acetyltransferases/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/genetics , Anticodon/genetics , Anticodon/metabolism , DNA-Binding Proteins/metabolism , Histone Acetyltransferases/metabolism , Nucleic Acid Conformation , Phenotype , Protein Aggregates/physiology , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , Proteins/genetics , Proteomics/methods , RNA, Transfer/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Thermodynamics , Thiouridine/analogs & derivatives , Thiouridine/chemistry
11.
RNA ; 25(11): 1481-1496, 2019 11.
Article En | MEDLINE | ID: mdl-31399541

The tRNA (m1G37) methyltransferase TrmD catalyzes m1G formation at position 37 in many tRNA isoacceptors and is essential in most bacteria, which positions it as a target for antibiotic development. In spite of its crucial role, little is known about TrmD in Pseudomonas aeruginosa (PaTrmD), an important human pathogen. Here we present detailed structural, substrate, and kinetic properties of PaTrmD. The mass spectrometric analysis confirmed the G36G37-containing tRNAs Leu(GAG), Leu(CAG), Leu(UAG), Pro(GGG), Pro(UGG), Pro(CGG), and His(GUG) as PaTrmD substrates. Analysis of steady-state kinetics with S-adenosyl-l-methionine (SAM) and tRNALeu(GAG) showed that PaTrmD catalyzes the two-substrate reaction by way of a ternary complex, while isothermal titration calorimetry revealed that SAM and tRNALeu(GAG) bind to PaTrmD independently, each with a dissociation constant of 14 ± 3 µM. Inhibition by the SAM analog sinefungin was competitive with respect to SAM (Ki = 0.41 ± 0.07 µM) and uncompetitive for tRNA (Ki = 6.4 ± 0.8 µM). A set of crystal structures of the homodimeric PaTrmD protein bound to SAM and sinefungin provide the molecular basis for enzyme competitive inhibition and identify the location of the bound divalent ion. These results provide insights into PaTrmD as a potential target for the development of antibiotics.


Pseudomonas aeruginosa/enzymology , tRNA Methyltransferases/metabolism , Catalysis , Crystallography, X-Ray , Kinetics , Protein Binding , Protein Conformation , RNA, Transfer/metabolism , S-Adenosylmethionine/metabolism , Substrate Specificity , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/isolation & purification
13.
Nat Chem Biol ; 13(8): 888-894, 2017 Aug.
Article En | MEDLINE | ID: mdl-28604692

Genomic modification by sulfur in the form of phosphorothioate (PT) is widespread among prokaryotes, including human pathogens. Apart from its physiological functions, PT sulfur has redox and nucleophilic properties that suggest effects on bacterial fitness in stressful environments. Here we show that PTs are dynamic and labile DNA modifications that cause genomic instability during oxidative stress. In experiments involving isotopic labeling coupled with mass spectrometry, we observed sulfur replacement in PTs at a rate of ∼2% h-1 in unstressed Escherichia coli and Salmonella enterica. Whereas PT levels were unaffected by exposure to hydrogen peroxide (H2O2) or hypochlorous acid (HOCl), PT turnover increased to 3.8-10% h-1 after HOCl treatment and was unchanged by H2O2, consistent with the repair of HOCl-induced sulfur damage. PT-dependent sensitivity to HOCl extended to cytotoxicity and DNA strand breaks, which occurred at HOCl doses that were orders of magnitude lower than the corresponding doses of H2O2. The genotoxicity of HOCl in PT-containing bacteria suggests reduced fitness in competition with HOCl-producing organisms and during infections in humans.


DNA/metabolism , Genomic Instability/drug effects , Phosphorothioate Oligonucleotides/metabolism , DNA/drug effects , DNA/genetics , DNA Breaks/drug effects , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Escherichia coli/metabolism , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/pharmacology , Oxidative Stress/drug effects , Phosphorothioate Oligonucleotides/antagonists & inhibitors , Phosphorothioate Oligonucleotides/chemistry , Salmonella enterica/drug effects , Salmonella enterica/metabolism , Structure-Activity Relationship
14.
Nucleic Acids Res ; 44(22): 10834-10848, 2016 12 15.
Article En | MEDLINE | ID: mdl-27683218

Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.


Bacterial Proteins/chemistry , Oxidative Stress , Pseudomonas aeruginosa/enzymology , RNA, Transfer/metabolism , tRNA Methyltransferases/chemistry , Amino Acid Sequence , Bacterial Proteins/physiology , Base Sequence , Catalytic Domain , Crystallography, X-Ray , Hydrogen Peroxide/pharmacology , Methylation , Models, Molecular , Pseudomonas aeruginosa/drug effects , RNA, Bacterial/chemistry , tRNA Methyltransferases/physiology
15.
Chem Res Toxicol ; 28(5): 978-88, 2015 May 18.
Article En | MEDLINE | ID: mdl-25772370

Cells respond to stress by controlling gene expression at several levels, with little known about the role of translation. Here, we demonstrate a coordinated translational stress response system involving stress-specific reprogramming of tRNA wobble modifications that leads to selective translation of codon-biased mRNAs representing different classes of critical response proteins. In budding yeast exposed to four oxidants and five alkylating agents, tRNA modification patterns accurately distinguished among chemically similar stressors, with 14 modified ribonucleosides forming the basis for a data-driven model that predicts toxicant chemistry with >80% sensitivity and specificity. tRNA modification subpatterns also distinguish SN1 from SN2 alkylating agents, with SN2-induced increases in m(3)C in tRNA mechanistically linked to selective translation of threonine-rich membrane proteins from genes enriched with ACC and ACT degenerate codons for threonine. These results establish tRNA modifications as predictive biomarkers of exposure and illustrate a novel regulatory mechanism for translational control of cell stress response.


Alkylating Agents/toxicity , Codon/genetics , Oxidants/toxicity , Protein Biosynthesis/drug effects , RNA, Transfer/genetics , Saccharomycetales/drug effects , RNA, Fungal/genetics , Saccharomycetales/genetics
16.
Nucleic Acids Res ; 43(5): e32, 2015 Mar 11.
Article En | MEDLINE | ID: mdl-25539917

A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria.


Mycobacterium bovis/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 5S/genetics , RNA, Untranslated/genetics , Chromatography, Gel , Chromatography, High Pressure Liquid/methods , RNA Processing, Post-Transcriptional , RNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/isolation & purification , RNA, Ribosomal, 5S/isolation & purification , RNA, Transfer/genetics , RNA, Transfer/isolation & purification , RNA, Untranslated/isolation & purification , Reproducibility of Results , Ribonucleosides/genetics
17.
Mol Microbiol ; 93(4): 776-85, 2014 Aug.
Article En | MEDLINE | ID: mdl-25040300

Prokaryotes protect their genomes from foreign DNA with a diversity of defence mechanisms, including a widespread restriction-modification (R-M) system involving phosphorothioate (PT) modification of the DNA backbone. Unlike classical R-M systems, highly partial PT modification of consensus motifs in bacterial genomes suggests an unusual mechanism of PT-dependent restriction. In Salmonella enterica, PT modification is mediated by four genes dptB-E, while restriction involves additional three genes dptF-H. Here, we performed a series of studies to characterize the PT-dependent restriction, and found that it presented several features distinct with traditional R-M systems. The presence of restriction genes in a PT-deficient mutant was not lethal, but instead resulted in several pathological phenotypes. Subsequent transcriptional profiling revealed the expression of > 600 genes was affected by restriction enzymes in cells lacking PT, including induction of bacteriophage, SOS response and DNA repair-related genes. These transcriptional responses are consistent with the observation that restriction enzymes caused extensive DNA cleavage in the absence of PT modifications in vivo. However, overexpression of restriction genes was lethal to the host in spite of the presence PT modifications. These results point to an unusual mechanism of PT-dependent DNA cleavage by restriction enzymes in the face of partial PT modification.


DNA Restriction-Modification Enzymes/metabolism , DNA/metabolism , Phosphorothioate Oligonucleotides/metabolism , Salmonella enterica/enzymology , Salmonella enterica/metabolism , DNA Restriction-Modification Enzymes/genetics , Gene Deletion , Gene Expression Profiling , Hydrolysis , Microbial Viability , Salmonella enterica/genetics
18.
Nat Commun ; 5: 3951, 2014 Jun 05.
Article En | MEDLINE | ID: mdl-24899568

Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other PT functions. Here we report two novel, orthogonal technologies to map PTs across the genomes of B7A and FF75 with >90% agreement: single molecule, real-time sequencing and deep sequencing of iodine-induced cleavage at PT (ICDS). In B7A, we detect PT on both strands of GpsAAC/GpsTTC motifs, but with only 12% of 40,701 possible sites modified. In contrast, PT in FF75 occurs as a single-strand modification at CpsCA, again with only 14% of 160,541 sites modified. Single-molecule analysis indicates that modification could be partial at any particular genomic site even with active restriction by DndF-H, with direct interaction of modification proteins with GAAC/GTTC sites demonstrated with oligonucleotides. These results point to highly unusual target selection by PT-modification proteins and rule out known R-M mechanisms.


Consensus Sequence/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Genome, Bacterial , Phosphates/metabolism , Vibrio/genetics , Chromosome Mapping , DNA Restriction-Modification Enzymes , DNA, Bacterial/metabolism , Escherichia coli/metabolism , Vibrio/metabolism
19.
J Am Chem Soc ; 134(43): 18053-64, 2012 Oct 31.
Article En | MEDLINE | ID: mdl-23057664

Guanine is a major target for oxidation in DNA, with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a major product. 8-oxodG is itself significantly more susceptible to oxidation than guanine, with the resulting damage consisting of more than 10 different products. This complexity has hampered efforts to understand the determinants of biologically relevant DNA oxidation chemistry. To address this problem, we have developed a high mass accuracy mass spectrometric method to quantify oxidation products arising site specifically in DNA. We applied this method to quantify the role of sequence context in defining the spectrum of damage products arising from oxidation of 8-oxodG by two oxidants: nitrosoperoxycarbonate (ONOOCO(2)(-)), a macrophage-derived chemical mediator of inflammation, and the classical one-electron oxidant, riboflavin-mediated photooxidation. The results reveal the predominance of dehydroguanidinohydantoin (DGh) in 8-oxodG oxidation by both oxidants. While the relative quantities of 8-oxodG oxidation products arising from ONOOCO(2)(-) did not vary as a function of sequence context, products of riboflavin-mediated photooxidation of 8-oxodG were highly sequence dependent. Several of the 8-oxodG oxidation products underwent hydrolytic conversion to new products with half-lives of 2-7 h. The results have implications for understanding the chemistry of DNA oxidation and the biological response to the damage, with DNA damage recognition and repair systems faced with a complex and dynamic set of damage targets.


Deoxyguanosine/analogs & derivatives , 8-Hydroxy-2'-Deoxyguanosine , Carbonates/chemistry , Chromatography, High Pressure Liquid , DNA/chemistry , Deoxyguanosine/chemistry , Mass Spectrometry , Molecular Structure , Nitrates/chemistry , Oxidation-Reduction , Riboflavin/chemistry , Spectrophotometry, Ultraviolet
20.
Proc Natl Acad Sci U S A ; 108(7): 2963-8, 2011 Feb 15.
Article En | MEDLINE | ID: mdl-21285367

Phosphorothioate (PT) modification of DNA, with sulfur replacing a nonbridging phosphate oxygen, was recently discovered as a product of the dnd genes found in bacteria and archaea. Given our limited understanding of the biological function of PT modifications, including sequence context, genomic frequencies, and relationships to the diversity of dnd gene clusters, we undertook a quantitative study of PT modifications in prokaryotic genomes using a liquid chromatography-coupled tandem quadrupole mass spectrometry approach. The results revealed a diversity of unique PT sequence contexts and three discrete genomic frequencies in a wide range of bacteria. Metagenomic analyses of PT modifications revealed unique ecological distributions, and a phylogenetic comparison of dnd genes and PT sequence contexts strongly supports the horizontal transfer of dnd genes. These results are consistent with the involvement of PT modifications in a type of restriction-modification system with wide distribution in prokaryotes.


DNA, Bacterial/metabolism , Gene Transfer, Horizontal/genetics , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Phosphorothioate Oligonucleotides/metabolism , Phylogeny , Vibrionaceae/genetics , Base Sequence , Chromatography, Liquid , Cloning, Molecular , Cluster Analysis , Computational Biology , DNA Primers/genetics , Genomics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sulfur/metabolism , Tandem Mass Spectrometry
...