Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105568, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103640

RESUMEN

Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.


Asunto(s)
Proteínas de Escherichia coli , Modelos Moleculares , Factores de Transcripción , Endopeptidasa Clp/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Terciaria de Proteína , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 299(12): 105440, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949227

RESUMEN

In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-ß5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.


Asunto(s)
Proteínas de Unión al ADN , Endopeptidasa Clp , Proteínas de Escherichia coli , Escherichia coli , Proteolisis , Factor sigma , Factores de Transcripción , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Fosforilación , Dominios Proteicos , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
Front Genet ; 13: 888025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571054

RESUMEN

There is considerable variability in the susceptibility and progression for COVID-19 and it appears to be strongly correlated with age, gender, ethnicity and pre-existing health conditions. However, to our knowledge, cohort studies of COVID-19 in clinically vulnerable groups are lacking. Host genetics has also emerged as a major risk factor for COVID-19, and variation in the ACE2 receptor, which facilitates entry of the SARS-CoV-2 virus into the cell, has become a major focus of attention. Thus, we interrogated an ethnically diverse cohort of National Health Service (NHS) patients in the United Kingdom (United Kingdom) to assess the association between variants in the ACE2 locus and COVID-19 risk. We analysed whole-genome sequencing (WGS) data of 1,837 cases who were tested positive for SARS-CoV-2, and 37,207 controls who were not tested, from the UK's 100,000 Genomes Project (100KGP) for the presence of ACE2 coding variants and extract expression quantitative trait loci (eQTLs). We identified a splice site variant (rs2285666) associated with increased ACE2 expression with an overrepresentation in SARS-CoV-2 positive patients relative to 100KGP controls (p = 0.015), and in hospitalised European patients relative to outpatients in intra-ethnic comparisons (p = 0.029). We also compared the prevalence of 288 eQTLs, of which 23 were enriched in SARS-CoV-2 positive patients. The eQTL rs12006793 had the largest effect size (d = 0.91), which decreases ACE2 expression and is more prevalent in controls, thus potentially reducing the risk of COVID-19. We identified three novel nonsynonymous variants predicted to alter ACE2 function, and showed that three variants (p.K26R, p. H378R, p. Y515N) alter receptor affinity for the viral Spike (S) protein. Variant p. N720D, more prevalent in the European population (p < 0.001), potentially increases viral entry by affecting the ACE2-TMPRSS2 complex. The spectrum of genetic variants in ACE2 may inform risk stratification of COVID-19 patients and could partially explain the differences in disease susceptibility and severity among different ethnic groups.

4.
Transcription ; 12(4): 156-170, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34674614

RESUMEN

For survival, bacteria need to continuously evolve and adapt to complex environments, including those that may impact the integrity of the DNA, the repository of genetic information to be passed on to future generations. The multiple factors of DNA repair share the substrate on which they operate with other key cellular machineries, principally those of replication and transcription, implying a high degree of coordination of DNA-based activities. In this review, I focus on progress made in the understanding of the protein factors operating at the crossroads of these three fundamental processes, with emphasis on the mutation frequency decline protein (Mfd, aka TRCF). Although Mfd research has a rich history that goes back in time for more than half a century, recent reports hint that much remains to be uncovered. I argue that besides being a transcription-repair coupling factor (TRCF), Mfd is also a global regulator of transcription and a pro-mutagenic factor, and that the way it interfaces with transcription, replication and nucleotide excision repair makes it an attractive candidate for the development of strategies to curb molecular evolution, hence, antibiotic resistance.


Asunto(s)
Proteínas Bacterianas , Transcripción Genética , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , ADN , Reparación del ADN , ADN Bacteriano/metabolismo , Factores de Transcripción/metabolismo
5.
Bio Protoc ; 11(14): e4094, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34395731

RESUMEN

Protein translocation on DNA represents the key biochemical activity of ssDNA translocases (aka helicases) and dsDNA translocases such as chromatin remodelers. Translocation depends on DNA binding but is a distinct process as it typically involves multiple DNA binding states, which are usually dependent on nucleotide binding/hydrolysis and are characterized by different affinities for the DNA. Several translocation assays have been described to distinguish between these two modes of action, simple binding as opposed to directional movement on dsDNA. Perhaps the most widely used is the triplex-forming oligonucleotide displacement assay. Traditionally, this assay relies on the formation of a DNA triplex from a dsDNA segment and a short radioactively labeled oligonucleotide. Upon translocation of the protein of interest along the DNA substrate, the third DNA strand is destabilized and eventually released off the DNA duplex. This process can be visualized and quantitated by polyacrylamide electrophoresis. Here, we present an effective, sensitive, and convenient variation of this assay that utilizes a fluorescently labeled oligonucleotide, eliminating the need to radioactively label DNA. In short, our protocol provides a safe and user-friendly alternative. Graphical abstract: Figure 1.Schematic of the triplex-forming oligonucleotide displacement assay.

6.
Protein Sci ; 30(4): 899-907, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33599047

RESUMEN

In the model organism Escherichia coli and related species, the general stress response relies on tight regulation of the intracellular levels of the promoter specificity subunit RpoS. RpoS turnover is exclusively dependent on RssB, a two-domain response regulator that functions as an adaptor that delivers RpoS to ClpXP for proteolysis. Here, we report crystal structures of the receiver domain of RssB both in its unphosphorylated form and bound to the phosphomimic BeF3- . Surprisingly, we find only modest differences between these two structures, suggesting that truncating RssB may partially activate the receiver domain to a "meta-active" state. Our structural and sequence analysis points to RssB proteins not conforming to either the Y-T coupling scheme for signaling seen in prototypical response regulators, such as CheY, or to the signaling model of the less understood FATGUY proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Transducción de Señal , Factores de Transcripción/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nat Commun ; 11(1): 3740, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719356

RESUMEN

Mfd couples transcription to nucleotide excision repair, and acts on RNA polymerases when elongation is impeded. Depending on impediment severity, this action results in either transcription termination or elongation rescue, which rely on ATP-dependent Mfd translocation on DNA. Due to its role in antibiotic resistance, Mfd is also emerging as a prime target for developing anti-evolution drugs. Here we report the structure of DNA-bound Mfd, which reveals large DNA-induced structural changes that are linked to the active site via ATPase motif VI. These changes relieve autoinhibitory contacts between the N- and C-termini and unmask UvrA recognition determinants. We also demonstrate that translocation relies on a threonine in motif Ic, widely conserved in translocases, and a family-specific histidine near motif IVa, reminiscent of the "arginine clamp" of RNA helicases. Thus, Mfd employs a mode of DNA recognition that at its core is common to ss/ds translocases that act on DNA or RNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , ADN/química , ADN/ultraestructura , Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , ARN Helicasas/metabolismo , Factores de Transcripción/química
8.
Genes Dev ; 33(11-12): 718-732, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30975721

RESUMEN

The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Estabilidad Proteica , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
9.
Science ; 361(6404)2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30139843

RESUMEN

Spastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers. These damage sites are repaired spontaneously by guanosine triphosphate (GTP)-tubulin incorporation, which rejuvenates and stabilizes the microtubule shaft. Consequently, spastin and katanin increase microtubule rescue rates. Furthermore, newly severed ends emerge with a high density of GTP-tubulin that protects them against depolymerization. The stabilization of the newly severed plus ends and the higher rescue frequency synergize to amplify microtubule number and mass. Thus, severing enzymes regulate microtubule architecture and dynamics by promoting GTP-tubulin incorporation within the microtubule shaft.


Asunto(s)
Guanosina Trifosfato/metabolismo , Katanina/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Espastina/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Caenorhabditis elegans , Drosophila melanogaster , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Imagen Individual de Molécula
11.
Cell ; 172(1-2): 344-357.e15, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29224782

RESUMEN

The bacterial Mfd ATPase is increasingly recognized as a general transcription factor that participates in the resolution of transcription conflicts with other processes/roadblocks. This function stems from Mfd's ability to preferentially act on stalled RNA polymerases (RNAPs). However, the mechanism underlying this preference and the subsequent coordination between Mfd and RNAP have remained elusive. Here, using a novel real-time translocase assay, we unexpectedly discovered that Mfd translocates autonomously on DNA. The speed and processivity of Mfd dictate a "release and catch-up" mechanism to efficiently patrol DNA for frequently stalled RNAPs. Furthermore, we showed that Mfd prevents RNAP backtracking or rescues a severely backtracked RNAP, allowing RNAP to overcome stronger obstacles. However, if an obstacle's resistance is excessive, Mfd dissociates the RNAP, clearing the DNA for other processes. These findings demonstrate a remarkably delicate coordination between Mfd and RNAP, allowing efficient targeting and recycling of Mfd and expedient conflict resolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Factores de Transcripción/genética , Terminación de la Transcripción Genética
12.
Photochem Photobiol ; 93(1): 268-279, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27859304

RESUMEN

Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , Factores de Transcripción/metabolismo , Transcripción Genética , Daño del ADN , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Moldes Genéticos
13.
J Mol Biol ; 428(9 Pt A): 1742-59, 2016 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-26996940

RESUMEN

The molecular mechanism by which the microtubule-associated protein (MAP) tau regulates the formation of microtubules (MTs) is poorly understood. The activity of tau is controlled via phosphorylation at specific Ser/Thr sites. Of those phosphorylation sites, 17 precede a proline, making them potential recognition sites for the peptidyl-prolyl isomerase Pin1. Pin1 binding and catalysis of phosphorylated tau at the AT180 epitope, which was implicated in Alzheimer's disease, has been reported to be crucial for restoring tau's ability to promote MT polymerization in vitro and in vivo [1]. Surprisingly, we discover that Pin1 does not promote phosphorylated tau-induced MT formation in vitro, refuting the commonly accepted model in which Pin1 binding and catalysis on the A180 epitope restores the function of the Alzheimer's associated phosphorylated tau in tubulin assembly [1, 2]. Using turbidity assays, time-resolved small angle X-ray scattering (SAXS), and time-resolved negative stain electron microscopy (EM), we investigate the mechanism of tau-mediated MT assembly and the role of the Thr231 and Ser235 phosphorylation on this process. We discover novel GTP-tubulin ring-shaped species, which are detectable in the earliest stage of tau-induced polymerization and may play a crucial role in the early nucleation phase of MT assembly. Finally, by NMR and SAXS experiments, we show that the tau molecules must be located on the surface of MTs and tubulin rings during the polymerization reaction. The interaction between tau and tubulin is multipartite, with a high affinity interaction of the four tubulin-binding repeats, and a weaker interaction with the proline-rich sequence and the termini of tau.


Asunto(s)
Microtúbulos/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Multimerización de Proteína , Proteínas tau/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Microtúbulos/química , Microtúbulos/ultraestructura , Dispersión del Ángulo Pequeño
14.
Cell ; 157(6): 1405-1415, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906155

RESUMEN

Acetylation of α-tubulin Lys40 by tubulin acetyltransferase (TAT) is the only known posttranslational modification in the microtubule lumen. It marks stable microtubules and is required for polarity establishment and directional migration. Here, we elucidate the mechanistic underpinnings for TAT activity and its preference for microtubules with slow turnover. 1.35 Å TAT cocrystal structures with bisubstrate analogs constrain TAT action to the microtubule lumen and reveal Lys40 engaged in a suboptimal active site. Assays with diverse tubulin polymers show that TAT is stimulated by microtubule interprotofilament contacts. Unexpectedly, despite the confined intraluminal location of Lys40, TAT efficiently scans the microtubule bidirectionally and acetylates stochastically without preference for ends. First-principles modeling and single-molecule measurements demonstrate that TAT catalytic activity, not constrained luminal diffusion, is rate limiting for acetylation. Thus, because of its preference for microtubules over free tubulin and its modest catalytic rate, TAT can function as a slow clock for microtubule lifetimes.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Microtúbulos/metabolismo , Acetilación , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Lisina/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
15.
Cell Mol Life Sci ; 70(23): 4495-509, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23807206

RESUMEN

DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.


Asunto(s)
Daño del ADN , Reparación del ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo
16.
Trends Biochem Sci ; 37(12): 543-52, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23084398

RESUMEN

Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Animales , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Conformación Proteica , Factores de Transcripción/química , Factores de Transcripción/genética
17.
Proc Natl Acad Sci U S A ; 109(9): 3353-8, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331906

RESUMEN

Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF-UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/fisiología , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Daño del ADN , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Polimerasa I/metabolismo , Factores de Transcripción/química
18.
Nat Struct Mol Biol ; 18(11): 1250-8, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020298

RESUMEN

Tubulin tyrosine ligase (TTL) catalyzes the post-translational C-terminal tyrosination of α-tubulin. Tyrosination regulates recruitment of microtubule-interacting proteins. TTL is essential. Its loss causes morphogenic abnormalities and is associated with cancers of poor prognosis. We present the first crystal structure of TTL (from Xenopus tropicalis), defining the structural scaffold upon which the diverse TTL-like family of tubulin-modifying enzymes is built. TTL recognizes tubulin using a bipartite strategy. It engages the tubulin tail through low-affinity, high-specificity interactions, and co-opts what is otherwise a homo-oligomerization interface in structurally related ATP grasp-fold enzymes to form a tight hetero-oligomeric complex with the tubulin body. Small-angle X-ray scattering and functional analyses reveal that TTL forms an elongated complex with the tubulin dimer and prevents its incorporation into microtubules by capping the tubulin longitudinal interface, possibly modulating the partition of tubulin between monomeric and polymeric forms.


Asunto(s)
Péptido Sintasas/química , Conformación Proteica , Pliegue de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animales , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
19.
J Cell Biol ; 189(7): 1087-96, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20566685

RESUMEN

The tumor suppressor protein adenomatous polyposis coli (APC) regulates cell protrusion and cell migration, processes that require the coordinated regulation of actin and microtubule dynamics. APC localizes in vivo to microtubule plus ends and actin-rich cortical protrusions, and has well-documented direct effects on microtubule dynamics. However, its potential effects on actin dynamics have remained elusive. Here, we show that the C-terminal "basic" domain of APC (APC-B) potently nucleates the formation of actin filaments in vitro and stimulates actin assembly in cells. Nucleation is achieved by a mechanism involving APC-B dimerization and recruitment of multiple actin monomers. Further, APC-B nucleation activity is synergistic with its in vivo binding partner, the formin mDia1. Together, APC-B and mDia1 overcome a dual cellular barrier to actin assembly imposed by profilin and capping protein. These observations define a new function for APC and support an emerging view of collaboration between distinct actin assembly-promoting factors with complementary activities.


Asunto(s)
Actinas/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/fisiología , Proteínas Portadoras/fisiología , Proteínas de Capping de la Actina , Animales , Proteínas Fetales/fisiología , Forminas , Ratones , Proteínas de Microfilamentos/fisiología , Células 3T3 NIH , Proteínas Nucleares/fisiología , Profilinas , Multimerización de Proteína , Transporte de Proteínas
20.
Curr Opin Struct Biol ; 17(1): 96-102, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17239578

RESUMEN

The widely conserved bacterial transcription repair coupling factor (TRCF) is a large, multidomain, superfamily 2 ATPase. It couples nucleotide excision repair with transcription by dislodging inactive RNA polymerase molecules stalled at template DNA lesions and increasing the rate at which the Uvr(A)BC excinuclease acts at these sites. The recent elucidation of X-ray crystal structures of Escherichia coli TRCF revealed its architectural details, and will enable the design of more incisive experiments addressing how TRCF translocates on double-stranded DNA, destabilizes the RNA polymerase ternary elongation complex and recruits the Uvr(A)BC system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...