Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 104(44): 17471-6, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17959777

RESUMEN

Malaria has been a major selective force on the human population, and several erythrocyte polymorphisms have evolved that confer resistance to severe malaria. Plasmodium falciparum rosetting, a parasite virulence phenotype associated with severe malaria, is reduced in blood group O erythrocytes compared with groups A, B, and AB, but the contribution of the ABO blood group system to protection against severe malaria has received little attention. We hypothesized that blood group O may confer resistance to severe falciparum malaria through the mechanism of reduced rosetting. In a matched case-control study of 567 Malian children, we found that group O was present in only 21% of severe malaria cases compared with 44-45% of uncomplicated malaria controls and healthy controls. Group O was associated with a 66% reduction in the odds of developing severe malaria compared with the non-O blood groups (odds ratio 0.34, 95% confidence interval 0.19-0.61, P < 0.0005, severe cases versus uncomplicated malaria controls). In the same sample set, P. falciparum rosetting was reduced in parasite isolates from group O children compared with isolates from the non-O blood groups (P = 0.003, Kruskal-Wallis test). Statistical analysis indicated a significant interaction between host ABO blood group and parasite rosette frequency that supports the hypothesis that the protective effect of group O operates through the mechanism of reduced P. falciparum rosetting. This work provides insights into malaria pathogenesis and suggests that the selective pressure imposed by malaria may contribute to the variable global distribution of ABO blood groups in the human population.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Malaria Falciparum/sangre , Malaria Falciparum/patología , Plasmodium falciparum , Animales , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Formación de Roseta
2.
Infect Immun ; 75(6): 3014-20, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17438038

RESUMEN

The invasion of erythrocytes by Plasmodium falciparum occurs through multiple pathways that can be studied in vitro by examining the invasion of erythrocytes treated with enzymes such as neuraminidase, trypsin, and chymotrypsin. We have studied the invasion pathways used by 31 Kenyan P. falciparum isolates from children with uncomplicated or severe malaria. Six distinct invasion profiles were detected, out of eight possible profiles. The majority of isolates (23 of 31) showed neuraminidase-resistant, trypsin-sensitive invasion, characteristic of the pathway mediated by an unknown parasite ligand and erythrocyte receptor "X." The neuraminidase-sensitive, trypsin-sensitive phenotype consistent with invasion mediated by the binding of parasite ligand erythrocyte binding antigen 175 to glycophorin A, the most common invasion profile in a previous study of Gambian field isolates, was seen in only 3 of 31 Kenyan isolates. No particular invasion profile was associated with severe P. falciparum malaria, and there was no significant difference in the levels of inhibition by the various enzyme treatments between isolates from children with severe malaria and those from children with uncomplicated malaria (P, >0.1 for all enzymes; Mann-Whitney U test). These results do not support the hypothesis that differences in invasion phenotypes play an important role in malaria virulence and indicate that considerable gaps remain in our knowledge of the molecular basis of invasion pathways in natural P. falciparum infections.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Animales , Antígenos de Protozoos , Sitios de Unión , Niño , Humanos , Kenia , Plasmodium falciparum/genética , Proteínas Protozoarias/química
3.
Mol Biochem Parasitol ; 149(2): 208-15, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16837080

RESUMEN

Plasmodium falciparum merozoites invade erythrocytes using a range of alternative ligands that includes erythrocyte binding antigenic proteins (EBAs) and reticulocyte binding protein homologues (Rh). Variation in the expression of some of these genes among culture-adapted parasite lines correlates with the use of different erythrocyte receptors. Here, expression profiles of four Rh genes and eba175 are analysed in a sample of 42 isolates cultured from malaria patients in Kenya. The profiles cluster into distinct groups, largely because of very strong negative correlations between the levels of expression of particular gene pairs (Rh1 versus Rh2b, eba175 versus Rh2b, and eba175 versus Rh4), previously associated with alternative invasion pathways in culture-adapted parasite lines. High levels of eba175 are seen in isolates in expression profile group I, and may be associated with sialic acid-dependent invasion. Groups II and III are, respectively, characterized by high levels of Rh2b and Rh4, and are more likely to be associated with sialic acid-independent invasion.


Asunto(s)
Eritrocitos/parasitología , Genes Protozoarios , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Animales , Antígenos de Protozoos/genética , Secuencia de Bases , Niño , ADN Protozoario/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Virulencia/genética
4.
Am J Trop Med Hyg ; 74(4): 554-63, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16606983

RESUMEN

Two potential malaria virulence factors, parasite multiplication rate (PMR) and red blood cell selectivity (measured as selectivity index [SI]), were assessed in Plasmodium falciparum clinical isolates from Mali and Kenya. At both sites, PMRs were low (Kenya median = 2.2, n = 33; Mali median = 2.6, n = 61) and did not differ significantly between uncomplicated and severe malaria cases. Malian isolates from hyperparasitemic patients had significantly lower PMRs (median = 1.8, n = 19) than other Malian isolates (uncomplicated malaria median = 3.1, n = 23; severe malaria median = 2.8, n = 19; P = 0.03, by Kruskal-Wallis test). Selective invasion occurred at both sites (Kenya geometric mean SI = 1.9, n = 98; Mali geometric mean SI = 1.6, n = 104), and there was no significant association between the SI and malaria severity. Therefore, in contrast to previous results from Thailand, we found no association of PMR and SI with malaria severity in African children. This raises the possibility of differences in the mechanisms of malaria virulence between sub-Saharan Africa and Asia.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Plasmodium falciparum/patogenicidad , Animales , Células Cultivadas , Preescolar , Eritrocitos/parasitología , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria Falciparum/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/patología , Masculino , Malí/epidemiología , Plasmodium falciparum/aislamiento & purificación , Formación de Roseta , Índice de Severidad de la Enfermedad , Virulencia
5.
Exp Parasitol ; 112(4): 269-73, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16364300

RESUMEN

Rosetting is a parasite adhesion phenotype associated with severe malaria in African children. Why parasites form rosettes is unknown, although enhanced invasion or immune evasion have been suggested as possible functions. Previous work showed that rosetting does not enhance parasite invasion under standard in vitro conditions. We hypothesised that rosetting might promote invasion in the presence of host invasion-inhibitory antibodies, by allowing merozoites direct entry into the erythrocytes in the rosette and so minimising exposure to plasma antibodies. We therefore investigated whether rosetting influences invasion in the presence of invasion-inhibitory antibodies to MSP-1. We found no difference in invasion rates between isogenic rosetting and non-rosetting lines from two parasite strains, R29 and TM284, in the presence of MSP-1 antibodies (P = 0.62 and P = 0.63, Student's t test, TM284 and R29, respectively). These results do not support the hypothesis that rosettes protect merozoites from inhibitory antibodies during invasion. The biological function of rosetting remains unknown.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Eritrocitos/parasitología , Malaria Falciparum/inmunología , Parasitemia/inmunología , Plasmodium falciparum/inmunología , Formación de Roseta , Animales , Eritrocitos/inmunología , Humanos , Proteína 1 de Superficie de Merozoito/inmunología , Conejos
6.
J Cell Biol ; 167(4): 673-86, 2004 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-15557119

RESUMEN

The cell cycle is widely known to be regulated by networks of phosphorylation and ubiquitin-directed proteolysis. Here, we describe IX-14/invadolysin, a novel metalloprotease present only in metazoa, whose activity appears to be essential for mitotic progression. Mitotic neuroblasts of Drosophila melanogaster IX-14 mutant larvae exhibit increased levels of nuclear envelope proteins, monopolar and asymmetric spindles, and chromosomes that appear hypercondensed in length with a surrounding halo of loosely condensed chromatin. Zymography reveals that a protease activity, present in wild-type larval brains, is missing from homozygous tissue, and we show that IX-14/invadolysin cleaves lamin in vitro. The IX-14/invadolysin protein is predominantly found in cytoplasmic structures resembling invadopodia in fly and human cells, but is dramatically relocalized to the leading edge of migrating cells. Strikingly, we find that the directed migration of germ cells is affected in Drosophila IX-14 mutant embryos. Thus, invadolysin identifies a new family of conserved metalloproteases whose activity appears to be essential for the coordination of mitotic progression, but which also plays an unexpected role in cell migration.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Metaloendopeptidasas/metabolismo , Metaloproteasas/metabolismo , Mitosis/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , Aberraciones Cromosómicas/embriología , Secuencia Conservada/genética , Citoplasma/metabolismo , ADN Complementario/análisis , ADN Complementario/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster , Células Germinativas/citología , Células Germinativas/metabolismo , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Macrófagos , Metaloendopeptidasas/genética , Metaloendopeptidasas/aislamiento & purificación , Metaloproteasas/genética , Metaloproteasas/aislamiento & purificación , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Membrana Nuclear/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Huso Acromático/genética , Huso Acromático/metabolismo , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA