Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Braz J Microbiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963474

RESUMEN

Viral infection disrupts the normal regulation of the host gene's expression. In order to normalise the expression of dysregulated host genes upon virus infection, analysis of stable reference housekeeping genes using quantitative real-time-PCR (qRT-PCR) is necessary. In the present study, healthy and African swine fever virus (ASFV) infected porcine tissues were assessed for the expression stability of five widely used housekeeping genes (HPRT1, B2M, 18 S rRNA, PGK1 and H3F3A) as reference genes using standard algorithm. Total RNA from each tissue sample (lymph node, spleen, kidney, heart and liver) from healthy and ASFV-infected pigs was extracted and subsequently cDNA was synthesized, and subjected to qRT-PCR. Stability analysis of reference genes expression was performed using the Comparative delta CT, geNorm, BestKeeper and NormFinder algorithm available at RefFinder for the different groups. Direct Cycle threshold (CT) values of samples were used as an input for the web-based tool RefFinder. HPRT1 in spleen, 18 S rRNA in liver and kidney and H3F3A in heart and lymph nodes were found to be stable in the individual healthy tissue group (group A). The majority of the ASFV-infected organs (liver, kidney, heart, lymph node) exhibited H3F3A as stable reference gene with the exception of the ASFV-infected spleen, where HPRT1 was found to be the stable gene (group B). HPRT1 was found to be stable in all combinations of all CT values of both healthy and ASFV-infected porcine tissues (group C). Of five different reference genes investigated for their stability in qPCR analysis, the present study revealed that the 18 S rRNA, H3F3A and HPRT1 genes were optimal reference genes in healthy and ASFV-infected different porcine tissue samples. The study revealed the stable reference genes found in healthy as well as ASF-infected pigs and these reference genes identified through this study will form the baseline data which will be very useful in future investigations on gene expression in ASFV-infected pigs.

2.
J Food Sci Technol ; 61(8): 1516-1524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966784

RESUMEN

Escherichia coli and Staphylococcus aureus are the most important food borne pathogen transmitting from animal meat and meat products. Therefore, it is vital to design an accurate and specific diagnostic tool for identifying those food-borne pathogens in animal meat and meat products. In the current study, E. coli, methicillin-resistant and sensitive S. aureus (MRSA and MSSA) were simultaneously detected using a developed triplex PCR-based technique. To obtain an optimal reaction parameter, the multiplex assay was optimised by changing just one parameter while holding the others constant. Specificity of the assay was assessed using several porcine bacterial template DNA. The plasmid DNA was used to test the multiplex PCR assay's sensitivity and interference in spiked pork samples. E. coli, MRSA, and MSSA each have PCR amplified products with sizes of 335, 533, and 209 bp, respectively. The assay detects a minimum microbial load of 102 CFU/µl for all the three pathogens and can identify bacterial DNA as low as 10-2 ng/µl. The assay was validated employing 210 pork samples obtained from retail meat shops and slaughter houses, with MRSA, E. coli, and MSSA with the occurrence rate of 1.9%, 42.38%, and 18.1%, respectively. The rate of mixed bacterial contamination in pork meat samples examined with the developed method was 6.19%, 1.43%, 1.90%, and 1.43% for MSSA & E. coli, MRSA & E. coli, MSSA & MRSA, and E. coli, MSSA & MRSA, respectively. The developed multiplex PCR assay is quick and efficient, and it can distinguish between different bacterial pathogens in a single reaction tube.

3.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38952078

RESUMEN

Owing to the lack of effective vaccines, current control measures and eradication strategies for the African swine fever virus (ASFV) rely on early detection and stringent stamping-out procedures. In the present study, we developed two independent isothermal amplification assays, namely, loop-mediated isothermal amplification (LAMP) and polymerase spiral reaction (PSR), for quick visualization of the ASFV genome in clinical samples. Additionally, a quantitative real-time PCR (qRT-PCR)-based hydrolysis probe assay was developed for comparative assessment of sensitivity with the developed isothermal assays. The analytical sensitivity of the LAMP, PSR, and qRT-PCR was found to be 2.64 ×105 copies/µL, 2.64 ×102 copies/µL, and 2.64 ×101 copies/µL, respectively. A total of 165 clinical samples was tested using the developed visual assays. The relative accuracy, relative specificity, and relative diagnostic sensitivity for LAMP vs PSR were found to be 95.37% vs 102.48%, 97.46% vs 101.36%, and 73.33% vs 113.33%, respectively.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Porcinos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Técnicas de Diagnóstico Molecular/métodos , Genoma Viral/genética
4.
Arch Virol ; 169(7): 145, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864875

RESUMEN

Since 2020, African swine fever (ASF) has affected all pig breeds in Northeast India except Doom pigs, a unique indigenous breed from Assam and the closest relatives of Indian wild pigs. ASF outbreaks result in significant economic losses for pig farmers in the region. Based on sequencing and phylogenetic analysis of the B646L (p72) gene, it has been determined that ASFV genotype II is responsible for outbreaks in this region. Recent studies have shown that MYD88, LDHB, and IFIT1, which are important genes of the immune system, are involved in the pathogenesis of ASFV. The differential expression patterns of these genes in surviving ASFV-infected and healthy Doom breed pigs were compared to healthy controls at different stages of infection. The ability of Doom pigs to withstand common pig diseases, along with their genetic resemblance to wild pigs, make them ideal candidates for studying tolerance to ASFV infection. In the present study, we investigated the natural resistance to ASF in Doom pigs from an endemic area in Northeast India. The results of this study provide important molecular insights into the regulation of ASFV tolerance genes.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Brotes de Enfermedades , Filogenia , Animales , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , India/epidemiología , Porcinos , Brotes de Enfermedades/veterinaria , Genotipo , Factor 88 de Diferenciación Mieloide/genética , Resistencia a la Enfermedad/genética
5.
Arch Virol ; 169(3): 54, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381218

RESUMEN

African swine fever (ASF) has emerged as a threat to swine production worldwide. Evasion of host immunity by ASF virus (ASFV) is well understood. However, the role of ASFV in triggering oncogenesis is still unclear. In the present study, ASFV-infected kidney tissue samples were subjected to Illumina-based transcriptome analysis. A total of 2463 upregulated and 825 downregulated genes were differentially expressed (p < 0.05). A literature review revealed that the majority of the differentially expressed host genes were key molecules in signaling pathways involved in oncogenesis. Bioinformatic analysis indicated the activation of certain oncogenic KEGG pathways, including basal cell carcinoma, breast cancer, transcriptional deregulation in cancer, and hepatocellular carcinoma. Analysis of host-virus interactions revealed that the upregulated oncogenic RELA (p65 transcription factor) protein of Sus scrofa can interact with the A238L (hypothetical protein of unknown function) of ASFV. Differential expression of oncogenes was confirmed by qRT-PCR, using the H3 histone family 3A gene (H3F3A) as an internal control to confirm the RNA-Seq data. The levels of gene expression indicated by qRT-PCR matched closely to those determined through RNA-Seq. These findings open up new possibilities for investigation of the mechanisms underlying ASFV infection and offer insights into the dynamic interaction between viral infection and oncogenic processes. However, as these investigations were conducted on pigs that died from natural ASFV infection, the role of ASFV in oncogenesis still needs to be investigated in controlled experimental studies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Neoplasias Hepáticas , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Transcriptoma , Fiebre Porcina Africana/genética , Oncogenes , Transformación Celular Neoplásica , Carcinogénesis/genética
6.
Comp Immunol Microbiol Infect Dis ; 106: 102128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309206

RESUMEN

Helicobacter species (spp.) is a gram-negative spiral-shaped motile bacterium that causes gastritis in pigs and also colonizes in the human stomach. The present study assessed the prevalence of Helicobacter spp. in pig gastric mucosa and the stool of pig farmers in Assam, India. A total of 403 stomach samples from pig slaughter points, 74 necropsy samples of pigs from pig farms, and 97 stool samples from pig farmers were collected. Among the pig stomach samples, 43 (20.09%) of those with gastritis showed the presence of Gram-negative, spiral-shaped organisms, while only 3.04% of stomach samples without lesions had these organisms. Scanning Electron Microscopy (SEM) of urease-positive stomach samples revealed tightly coiled Helicobacter bacteria in the mucus lining. Histopathological examination showed chronic gastritis with hemorrhagic necrosis, leucocytic infiltration, and lymphoid aggregates. PCR confirmed the presence of Helicobacter suis in 19.63% of pig stomach samples and 2.08% of pig farmer stool samples. Additionally, 3.12% of the stool samples from pig farmers were positive for Helicobacter pylori. Phylogenetic analysis revealed distinct clusters of Helicobacter suis with other Helicobacter spp. These findings highlight the prevalence of Helicobacter in both pig gastric mucosa and pig farmer stool. The findings highlight the need for improved sanitation and hygiene practices among pig farmers to minimize the risk of Helicobacter infection in humans.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter heilmannii , Helicobacter , Humanos , Porcinos , Animales , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/veterinaria , Agricultores , Incidencia , Filogenia , Gastritis/epidemiología , Gastritis/veterinaria , Gastritis/microbiología , Helicobacter/genética
7.
Gene ; 897: 148070, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070787

RESUMEN

Mitochondrial DNA (mtDNA) serves as a valuable molecular marker for constructing matrilineal genealogies and tracing the evolutionary history of animals. This study aimed to characterize the complete mitochondrial genome of the Indian wild pig (IWB) (Sus scrofa cristatus) and identify IWB-specific DNA sequences that could be used as genomic signatures to differentiate IWB from domestic Indian pigs (IDP) in forensic cases. For the purpose, three wild IWB from a rescue centre were used for the characterization of the mitochondrial genome of the IWB. The mitochondrial genome was sequenced by the primer walking technique using 30 overlapping primers. The mitochondrial genome of the IWB was found to be 16,689 bp long containing 37 genes coding for 2 rRNAs, 22 tRNAs, 13 protein coding genes, and 1 D-loop region similar to the mitogenome of other pigs. Sequence analysis of the D-loop of IWB with other IDP indicated some signature sequence for IWB like duplication and transition event from 1090th to 1099th position, deletion of a 10 bp sequence at the 755th position, insertion of (CA) at the 137th position, and substitution of AT to GA at the 638th position. These variations specially the duplication along with transition event causes creation of unique signature sequence (-ACACAAACCT-) in the IWB that could serve as signature sequences for the IWB and be used as markers for differentiation of IWB from IDP breeds in academic as well as forensic or vetero-legal cases. Overall, a total of 36 polymorphic positions were identified in the IWB, with 29 sites being unique to the IWB only and seven being common to the Doom and HDK75 pig breeds. None of the common polymorphic sites were identified in prevailing domestic pig populations. Phylogenetic analysis of the mitochondrial genome revealed the distinct separation of the IWB from IDP. The results of genetic distance evaluation showed that the Doom pig breed was the closest to the IWB. This study provides valuable insights into the mitogenome characterisation, signature sequence and genetic distance analysis of the IWB and establishes a foundation for future studies on the conservation of this protected species.


Asunto(s)
Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Filogenia , ADN Mitocondrial/genética , Mitocondrias/genética , Genómica , Análisis de Secuencia de ADN
8.
Braz J Microbiol ; 55(1): 1017-1022, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041718

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) and African swine fever (ASF) are economically important diseases of pigs throughout the world. During an outbreak, all age groups of animals except piglets < 1 month of age were affected with symptoms of high fever, cutaneous hemorrhages, vomition with blood, diarrhea, poor appetite, ataxia, and death. The outbreak was confirmed by the detection of the N gene of the porcine reproductive and respiratory syndrome virus (PRRSV) and the VP72 gene of the African swine fever virus (ASFV) by PCR in representative blood samples from affected pigs followed by Sanger sequencing. Mixed infection was also confirmed by simultaneous detection of both the viruses using multiplex PCR. Phylogenetic analysis of both the viruses revealed that the outbreak was related to ASFV and PRRSV strains from China which were also closely related to the PRRSV and ASFV strains from the recent outbreak from India. The study confirmed the involvement of genotype II of ASFV and genotype 2 of PRRSV in the present outbreak. Interestingly, PRRSV associated with the present outbreak was characterized as a highly pathogenic PRRSV. Therefore, the present study indicates the possibility of future waves or further outbreaks of these diseases (PRRS and ASF) in this region. This is the first report of ASFV and PRRSV co-infection in pigs from India.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Coinfección , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus de la Fiebre Porcina Africana/genética , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Fiebre Porcina Africana/epidemiología , Coinfección/epidemiología , Coinfección/veterinaria , Filogenia
9.
Microb Pathog ; 185: 106452, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972743

RESUMEN

The present investigation focuses on examining the clinical, histopathological, and ultrastructural changes that occurred in pig, during an outbreak of African swine fever (ASF) in 2022 in Assam, India. The disease initially manifested as a per-acute case with high mortality but without any evident clinical signs. Subsequently, some animals exhibited an acute form of the disease characterized by high fever (104-106 °F), anorexia, vomiting, respiratory distress, and bleeding from the anal and nasal orifices. During acute African swine fever virus (ASFV) infections, elevated levels of pro-inflammatory IL-1α, IL-1ß, IL-6, TNF, CCL2, CCL5, and CXCL10 were detected in the palatine tonsil, lymph nodes, spleen, and kidney using qPCR assay. These molecular changes were associated with haemorrhages, edemas, and lymphoid depletion. Postmortem examinations revealed prominent features such as splenomegaly with haemorrhages, haemorrhagic lymphadenitis, severe petechial haemorrhage in the kidney, pneumonia in the lungs, and necrotic palatine tonsil. Histopathological analysis demonstrated lymphocyte depletion in lymphoid organs, multi-organ haemorrhages, and interstitial pneumonia in the lungs. Scanning electron microscopy (SEM) further confirmed lymphocyte depletion in lymphoid organs through lymphocyte apoptosis and kidney damage with distorted tubules due to red blood cell destruction. Transmission electron microscopy reaffirmed lymphocyte apoptosis by observing chromatin condensation and nucleus margination in lymphocytes of lymphoid organs. These findings provide comprehensive insights into the clinical, histopathological, and ultrastructural aspects of ASF outbreak in pigs. Understanding the pathological changes associated with ASF can contribute to improved diagnosis, prevention, and control measures for this highly contagious and economically devastating viral disease.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/patología , Linfocitos , Brotes de Enfermedades , Hemorragia , Sus scrofa
10.
Pathogens ; 12(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887783

RESUMEN

The presence of bacterial pathogens such as Brucella spp., Clostridium spp., E. coli, Listeria monocytogenes, Salmonella spp., Staphylococcus spp., and Streptococcus suis not only hampers pig production but also carries significant zoonotic implications. The present study aims to conduct a comprehensive meta-analysis spanning over 13 years (2010-2023) to ascertain the prevalence of these zoonotic bacterial pathogens in Indian pig populations. The study seeks to synthesize data from diverse geographic regions within India and underscores the relevance of the One Health framework. A systematic search of electronic databases was meticulously performed. Inclusion criteria encompassed studies detailing zoonotic bacterial pathogen prevalence in pigs within India during the specified timeframe. Pertinent information including authors, publication year, geographical location, sampling techniques, sample sizes, and pathogen-positive case counts were meticulously extracted. The meta-analysis of zoonotic bacterial pathogens in Indian pig populations (2010-2023) unveiled varying prevalence rates: 9% Brucella spp., 22% Clostridium spp., 19% E. coli, 12% Listeria monocytogenes, 10% Salmonella spp. and Streptococcus suis, and 24% Staphylococcus spp. The application of random effects further revealed additional variability: 6% Brucella spp., 23% Clostridium spp., 24% E. coli, 14% Listeria monocytogenes, 10% Salmonella spp. and Streptococcus suis, and 35% Staphylococcus spp. Notably, the observed heterogeneity (I2) varied significantly from 87% to 99%. The meta-analysis findings underscore the pervasive nature of these diseases throughout India's pig populations, accentuating the substantial impact of these pathogens on pig health and the potential for zoonotic transmission. The present study reinforces the importance of the adoption of a comprehensive One Health approach that acknowledges the intricate interplay between animal, human and environmental health.

11.
Gene ; 887: 147786, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689220

RESUMEN

The growing use of antibiotics in livestock is one of the main causes of the rapid global spread of antimicrobial resistance (AMR). However, extensive research on AMR in animals is currently absent. In this article, we provide the bacterial antibiotic resistance genes (ARGs) from piggery waste samples in West Bengal, India, based on whole genome sequencing (WGS). According to the study, there are alarmingly high levels of Enterobacteriaceae in piggery waste, especially slaughterhouse waste, that are resistant to beta-lactam, aminoglycoside, sulphonamide, and tetracycline. We found several plasmids carrying multidrug-resistant Enterobacteriaceae including resistant to last-resort medications like colistin and carbapenems. Our findings will serve as a guide for developing AMR management policies for livestock in India and aid in understanding the current AMR profiles of pigs. To grasp the actual situation with AMR in the pig sector, large scale sample screening must be done.


Asunto(s)
Antibacterianos , Tetraciclina , Animales , Porcinos , Antibacterianos/farmacología , Sulfanilamida , Carbapenémicos , Ganado , Secuenciación Completa del Genoma
12.
Vaccines (Basel) ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631876

RESUMEN

Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.

13.
3 Biotech ; 13(7): 241, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37342511

RESUMEN

The present study aimed to generate antibodies against predicted B cell epitopic peptides encoding bAMH for developing different ELISA models. Sandwich ELISA was determined to be an excellent technique for assessing bAMH in bovine plasma based on sensitivity tests. The assay's specificity, sensitivity, inter- and intra-assay CV, recovery %, Lower limit of quantification (LLOQ), and Upper limit of quantification (ULOQ) were determined. The test was selective since it did not bind to AMH-related growth and differentiation factors (LH and FSH) or non-related components (BSA, progesterone). The intra-assay CV was 5.67%, 3.12%, 4.94%, 3.61% and 4.27% for 72.44, 183.11, 368.24, 522.24 and 732.25 pg/ml AMH levels, respectively. At the same time, the inter-assay CV was 8.77%, 7.87%, 4.53%, 5.76% and 6.70% for 79.30, 161.27, 356.30, 569.33 and 798.19 pg/ml AMH levels, respectively. The average (Mean ± SEM) recovery percentages were 88-100%. LLOQ was 5 pg/ml and ULOQ at 50 µg/ml (CV < 20%). In conclusion, we developed a new highly sensitive ELISA against bAMH using epitope specific antibodies.

14.
Comp Immunol Microbiol Infect Dis ; 98: 102005, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37352625

RESUMEN

Even though there is a link between antibiotic resistance and the presence of transposable elements few research has looked at the prevalence and distribution of transposable elements/ integrons in piggery farm samples. Present study identified the presence of six transposable elements namely Tn6763 (Accession number: OQ565300), Tn6764, (Accession number: OQ565299), Tn6765 (Accession number: OQ409902), Tn2003 (Accession number: OQ503494), Tn6072 (Accession number: OQ565298) and Tn6020 (Accession number: OQ503493) in piggery farm waste from India which are belongs to Enterobacteriaceae family. In a conjugative experiment, Klebsiella isolates carrying Tn6020 having the resistant phenotypes for nalidixic acid was used as donor cells while Escherichia coli DH5α Cells carrying chloramphenicol resistant plasmid was employed as recipient cells. Transconjugant bacterial colonies were shown to carry the Tn6020 transposable elements with both nalidixic acid (donor cell origin) and chloramphenicol (recipient cell origin) resistant antibiotic phenotypes. Given the presence of transposable elements in 21.4% of resistant Enterobacteriaceae strains, preventative measures are vital for avoiding the spread of mobile genetic resistance determinants in the piggery sector and to monitor their emergence.


Asunto(s)
Antibacterianos , Elementos Transponibles de ADN , Animales , Antibacterianos/farmacología , Cloranfenicol , Conjugación Genética , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Granjas , Integrones/genética , Pruebas de Sensibilidad Microbiana/veterinaria , Ácido Nalidíxico , Fenotipo , Plásmidos/genética , Porcinos
15.
Vaccines (Basel) ; 11(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679995

RESUMEN

Japanese encephalitis viruses (JEVs) are globally prevalent as deadly pathogens in humans and animals, including pig, horse and cattle. Japanese encephalitis (JE) still remains an important cause of epidemic encephalitis worldwide and exists in a zoonotic transmission cycle. Assam is one of the highly endemic states for JE in India. In the present study, to understand the epidemiological status of JE circulating in pigs and mosquito, particularly in Assam, India, molecular detection of JEV and the genome sequencing of JEV isolates from pigs and mosquitoes was conducted. The genome analysis of two JEV isolates from pigs and mosquitoes revealed 7 and 20 numbers of unique points of polymorphism of nucleotide during alignment of the sequences with other available sequences, respectively. Phylogenetic analysis revealed that the isolates of the present investigation belong to genotype III and are closely related with the strains of neighboring country China. This study highlights the transboundary nature of the JEV genotype III circulation, which maintained the same genotype through mosquito-swine transmission cycles.

16.
J Food Sci Technol ; 60(1): 132-146, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36618039

RESUMEN

In order to ensure food safety, screening food samples for the presence of pathogens has been categorised as a legal testing item throughout the globe. One of the most prevalent zoonotic bacteria transmitted through dairy milk is Staphylococcus aureus. Given the limitations of the conventional detection methods, in the current study we desigined a competitive lateral flow immune assay (LFIA) using colloidal silver nanoparticles derived from mango leaves for the detection of Staphylococcus aureus in cow milk. SpA, a recombinant protein of Staphylococcus aureus, was used to raised hyperimmune sera used for developing the assay followed by conjugation with the synthesized nanoparticles. To increase the specificity of the assay, the milk samples were prenriched with selective agar exclusively require for Staphyloccocus aureus. The assay was found to be completed within 7-8 h by observing test and control lines in LFIA strips. The developed assay was found to specifically detect the bacteria as low as 1000 cfu/ml of milk samples. With a total 230 number of raw and clinical mastitis milk samples, the assay was validated and achieved relative accuracy, specificity, and sensitivity values of 97.39, 98.03, and 96.1%, respectively. The developed LFIA, which uses economically feasible and stable silver nanoparticles derived from mango leaves, has the potential for routine screening of milk samples for the presence of Staphylococcus aureus, especially in low-resource settings, allowing for early diagnosis, which facilitates effective treatment for the dairy animals and prevents the transmission of the disease in consumers.

17.
Anim Biotechnol ; 34(1): 25-38, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34106815

RESUMEN

In addition to the transmission of paternal genome, spermatozoa also carry coding as well as noncoding microRNAs (miRNAs) into the female oocyte during the process of biological fertilization. Based on RNA deep sequencing, a total 28 number of differentially expressed miRNAs were cataloged in categorized FrieswalTM crossbred (Holstein Friesian X Sahiwal) bull semen on the basis of conception rate (CR) in field progeny testing program. Validation of selected miRNAs viz. bta-mir-182, bta-let-7b, bta-mir-34c and bta-mir-20a revealed that, superior bull semen having comparatively (p < .05) lower level of all the miRNAs in contrast to inferior bull semen. Additionally, it was illustrated that, bta-mir-20a and bta-mir-34c miRNAs are negatively (p < .01) correlated with seminal plasma catalase (CAT) activity and glutathione peroxidase (GPx) level. Interactome studies identified that bta-mir-140, bta-mir-342, bta-mir-1306 and bta-mir-217 can target few of the important solute carrier (SLC) proteins viz. SLC30A3, SLC39A9, SLC31A1 and SLC38A2, respectively. Interestingly, it was noticed that all the SLCs were significantly (p < .05) expressed at higher level in superior quality bull semen and they are negatively correlated (p < .01) with their corresponding miRNAs as mentioned. This study may reflect the role of miRNAs in regulating few of the candidate genes and thus may influence the bull semen quality traits.


Asunto(s)
MicroARNs , Semen , Bovinos , Animales , Masculino , Femenino , MicroARNs/genética , Análisis de Semen , Espermatozoides/metabolismo , Hibridación Genética
18.
Anim Biotechnol ; 34(6): 1883-1890, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35343866

RESUMEN

A diagnostic method for simultaneously detecting and distinguishing African Swine Fever (ASF), porcine circovirus type 2 (PCV2), and porcine parvovirus (PPV) in clinical specimens is critical for differential diagnosis, monitoring, and control in the field. Three primer pairs were designed and used to create a multiplex PCR assay. In addition, 356 porcine post mortem tissue samples from various parts of India's North Eastern region were tested by the developed multiplex PCR assay to demonstrate its accuracy. Using the designed primers, each of the ASF, PCV2 and PPV target genes was amplified, but no other porcine virus genes were detected. The assay's limit of detection was 102 copies/µl of PCV2, PPV, or ASFV. The detection of PCV2, PPV, and ASF in postmortem tissue samples revealed that they are co-circulating in India's North-Eastern region. The percentage positivity (PP) for PCV2, PPV and ASF single infection were 7.02% (25/356), 3.93% (14/356), and 3.37% (12/356), respectively, while the PP for PCV2& PPV co-infection was 2.80% (10/356), ASF & PCV2 co infection was 1.4% (5/356) and the ASF, PPV& PCV2 co-infection was1.40% (5/356). The results also indicate that the ASF can infect pigs alongside PCV and PPV.


Asunto(s)
Fiebre Porcina Africana , Infecciones por Circoviridae , Coinfección , Infecciones por Parvoviridae , Parvovirus Porcino , Enfermedades de los Porcinos , Virosis , Animales , Porcinos , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/métodos , Fiebre Porcina Africana/diagnóstico , Coinfección/diagnóstico , Coinfección/veterinaria , Infecciones por Circoviridae/diagnóstico , Infecciones por Circoviridae/veterinaria , Enfermedades de los Porcinos/diagnóstico , Virosis/diagnóstico , Parvovirus Porcino/genética
19.
Anim Biotechnol ; 34(6): 1857-1875, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35352616

RESUMEN

Dietary mix and host species have both been shown to have a significant impact on rumen microbial diversity, enteric methane emission and animal performance. The goal of this study was to see how the roughage concentrate ratio 70:30 (Low concentrate; LC) vs 40:60 (High concentrate; HC) and the host species crossbred cattle vs buffalo affected rumen microbial diversity, enteric methane emissions and nutrient utilization. Dry matter intake (kg/d) and dry matter percent digestibility were considerably (p < 0.05) higher in the HC ration and buffalo compared to LC ration and crossbred cattle, respectively. Both dietary mix and host species had a substantial (p < 0.05) impact on intake of various nutrients, including organic matter (OM), crude protein (CP), ether extract (EE), neutral detergent fiber (NDF), and acid detergent fiber (ADF). Increased concentrate proportion in the ration improved nitrogen balance, resulting in increased average daily gain and considerably reduced methane (g/d) output (p < 0.05). Furthermore, 16S rRNA genes were sequenced using Oxford Nanopore Technology (ONT) and subsequently annotated using the Centrifuge workflow to uncover ruminal bacterial diversity. Firmicutes was considerably (p < 0.01) greater in the LC diet, whereas, Bacteroidetes was higher in the HC ration. Genus Prevotella dominated all rumen samples, and buffalo fed LC ration had significantly (p < 0.01) higher Oscillospira abundance. At the species level, simple sugar-utilizing bacteria such as Prevotella spp. and Selenomonas ruminantium predominated in the crossbred cattle, but fibrolytic bacteria such as Oscillospira guilliermondii were statistically (p < 0.01) more abundant in the buffalo. Overall, dietary mix and host species have both been shown to have a significant impact on rumen microbial diversity, enteric methane emission and animal performance, however, host species remained a major driving force to change ruminal community composition as compared to roughage concentrate ratio under similar environmental conditions.


Asunto(s)
Búfalos , Fibras de la Dieta , Bovinos , Animales , Fibras de la Dieta/metabolismo , Búfalos/metabolismo , Metano/metabolismo , Rumen/metabolismo , Detergentes/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Dieta/veterinaria , Nutrientes , Alimentación Animal/análisis
20.
Anim Biotechnol ; 34(5): 1849-1854, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35357269

RESUMEN

CTX-M beta-lactamases are one of the most important extended spectrum beta-lactamase (ESBL) resistance enzymes found in E. coli. In the present study, 59% of E. coli isolates from mastitis cow milk were reported to be positive for ESBL types. The prevalence of beta-lactam (ß-lactam) antibiotic resistance was reported to be 84%, 72.7%, 52.27%, 50%, and 45.4% for cefotaxime, cefepime, cefuroxime, oxacillin, and cephalexine, respectively. The blaCTX-M gene was found in 65% (n = 17) of the E. coli isolates when they were genotyped. Further, the use of a CRISPR/cas9 cassette to target the E. coli blaCTX-M gene revealed changes in antibiotic phenotypes for cefotaxime.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Mastitis , Bovinos , Femenino , Animales , Antibacterianos/farmacología , Cefotaxima/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/genética , Leche/metabolismo , Sistemas CRISPR-Cas/genética , Fenotipo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas , Mastitis/genética , Enfermedades de los Bovinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...