Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biomolecules ; 11(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069793

RESUMEN

Major progress in the field of regenerative medicine is expected from the design of artificial scaffolds that mimic both the structural and functional properties of the ECM. The bionanocomposites approach is particularly well fitted to meet this challenge as it can combine ECM-based matrices and colloidal carriers of biological cues that regulate cell behavior. Here we have prepared bionanocomposites under high magnetic field from tilapia fish scale collagen and multifunctional silica nanoparticles (SiNPs). We show that scaffolding cues (collagen), multiple display of signaling peptides (SiNPs) and control over the global structuration (magnetic field) can be combined into a unique bionanocomposite for the engineering of biomaterials with improved cell performances.


Asunto(s)
Colágeno/química , Dióxido de Silicio/química , Tilapia/metabolismo , Andamios del Tejido/química , Células 3T3 , Animales , Adhesión Celular , Campos Magnéticos , Ratones , Nanocompuestos/química , Medicina Regenerativa
3.
Biomater Sci ; 8(2): 569-576, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31915761

RESUMEN

Cells respond to biophysical and biochemical signals. We developed a composite filament from collagen and silica particles modified to interact with collagen and/or present a laminin epitope (IKVAV) crucial for cell-matrix adhesion and signal transduction. This combines scaffolding and signaling and shows that local tuning of collagen organization enhances cell differentiation.


Asunto(s)
Materiales Biocompatibles/farmacología , Colágeno/farmacología , Células-Madre Neurales/efectos de los fármacos , Dióxido de Silicio/farmacología , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Humanos , Dióxido de Silicio/química
4.
ACS Appl Bio Mater ; 3(5): 2948-2957, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35025341

RESUMEN

Rebuilding biological environments is crucial when facing the challenges of fundamental and biomedical research. Thus, preserving the native state of biomolecules is essential. We use electrospinning (ES), which is an extremely promising method for the preparation of fibrillar membranes to mimic the ECM of native tissues. Here, we report for the first time (1) the ES of pure and native collagen into a self-supported membrane in absence of cross-linker and polymer support, (2) the preservation of the membrane integrity in hydrated media in absence of cross-linker, and (3) the preservation of the native molecular structure and recovery of the hierarchical assembly of collagen. We use a multiscale approach to characterize collagen native structure at the molecular level using circular dichroism, and to investigate collagen hierarchical organization within the self-supported membrane using a combination of multiphoton and electron microscopies. Finally, we show that the membranes are perfectly suited for cell adhesion and spreading, making them very promising candidates for the development of biomaterials and finding applications in biomedical research.

5.
Sci Rep ; 7(1): 11344, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900114

RESUMEN

Artificial bio-based scaffolds offer broad applications in bioinspired chemistry, nanomedicine, and material science. One current challenge is to understand how the programmed self-assembly of biomolecules at the nanometre level can dictate the emergence of new functional properties at the mesoscopic scale. Here we report a general approach to design genetically encoded protein-based scaffolds with modular biochemical and magnetic functions. By combining chemically induced dimerization strategies and biomineralisation, we engineered ferritin nanocages to nucleate and manipulate microtubule structures upon magnetic actuation. Triggering the self-assembly of engineered ferritins into micrometric scaffolds mimics the function of centrosomes, the microtubule organizing centres of cells, and provides unique magnetic and self-organizing properties. We anticipate that our approach could be transposed to control various biological processes and extend to broader applications in biotechnology or material chemistry.


Asunto(s)
Fenómenos Químicos , Magnetismo , Microtúbulos/química , Microtúbulos/metabolismo , Animales , Biomineralización , Ferritinas/química , Ferritinas/metabolismo , Ferritinas/ultraestructura , Humanos , Microtúbulos/ultraestructura , Nanoestructuras/química , Unión Proteica , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...