Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zoological Lett ; 10(1): 10, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877577

RESUMEN

As in most colonial and sessile marine invertebrates, bryozoan life history is characterized by asexual propagation of zooids for colonial growth and by sexual production of larvae for dispersal. However, comprehensive life histories, particularly in cryptic species such as endolithic (boring) bryozoans, remain poorly understood. The ctenostome family Penetrantiidae is widespread from temperate to tropical waters and often found in molluscan shells, offering an opportunity to study the boring lifestyle and its potential impact on bioerosion through growth and settlement experiments. Our research focused on Penetrantia clionoides from Guam in the Pacific Ocean, Penetrantia japonica from Japan, and a Penetrantia species from France in the Atlantic Ocean. We found distinct life histories and reproductive patterns potentially influenced by environmental factors such as temperature and food availability. The tropical P. clionoides displayed higher rates of larval production and growth compared to its temperate counterpart. For instance, the mean stolon extension was 335.2 µm/week in P. clionoides versus 232.1 µm/week in Penetrantia sp. Autozooid development took 13 days in P. clionoides and 31 days in Penetrantia sp. Anatomical features like apertural rims aided in species identification and in understanding larval settlement preferences, suggesting a tendency for philopatric settlement behavior. The bioerosional impact of penetrantiids remains little understood, but we generated first projections of bioerosion rates and a protocol for keeping Penetrantia under laboratory conditions, laying a foundation for further research in this field.

2.
Ecol Evol ; 14(4): e11276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638369

RESUMEN

Ctenostomes are a group of gymnolaemate bryozoans with an uncalcified chitinous body wall having few external, skeletal characters. Hence, species identification is challenging and their systematics remain poorly understood, even more so when they exhibit an endolithic (boring) lifestyle. Currently, there are four Recent families of endolithic bryozoans that live inside mineralized substrates like mollusk shells. In particular, Penetrantiidae Silén, 1946 has received considerable attention and its systematic affinity to either cheilostomes or ctenostomes has been debated. Species delimitation of penetrantiids remains difficult, owing to a high degree of colonial and zooidal plasticity. Consequently, an additional molecular approach is essential to unravel the systematics of penetrantiids, their phylogenetic placement and their species diversity. We therefore sequenced the mitochondrial (mt) genomes and two nuclear markers of 27 ctenostome species including nine penetrantiids. Our phylogeny supports the Penetrantiidae as a monophyletic group placed as sister taxon to the remaining ctenostomes alongside paludicellids, arachnidioids and terebriporids. The boring family Terebriporidae d'Orbigny, 1847 were previously considered to be among vesicularioids, but our results suggest an arachnidioid affinity instead. Ctenostome paraphyly is supported by our data, as the cheilostomes nest within them. A Multiporata clade is also well supported, including the former victorelloid genus Sundanella. Altogether, this study provides new insights into ctenostome systematics, assists with species delimitation and contributes to our understanding of the bryozoan tree of life.

3.
Front Zool ; 21(1): 5, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443908

RESUMEN

BACKGROUND: One of the most peculiar groups of the mostly colonial phylum Bryozoa is the taxon Monobryozoon, whose name already implies non-colonial members of the phylum. Its peculiarity and highly unusual lifestyle as a meiobenthic clade living on sand grains has fascinated many biologists. In particular its systematic relationship to other bryozoans remains a mystery. Despite numerous searches for M. ambulans in its type locality Helgoland, a locality with a long-lasting marine station and tradition of numerous courses and workshops, it has never been reencountered until today. Here we report the first observations of this almost mythical species, Monobryozoon ambulans. RESULTS: For the first time since 1938, we present new modern, morphological analyses of this species as well as the first ever molecular data. Our detailed morphological analysis confirms most previous descriptions, but also ascertains the presence of special ambulatory polymorphic zooids. We consider these as bud anlagen that ultimately consecutively separate from the animal rendering it pseudo-colonial. The remaining morphological data show strong ties to alcyonidioidean ctenostome bryozoans. Our morphological data is in accordance with the phylogenomic analysis, which clusters it with species of Alcyonidium as a sister group to multiporate ctenostomes. Divergence time estimation and ancestral state reconstruction recover the solitary state of M. ambulans as a derived character that probably evolved in the Late Cretaceous. In this study, we also provide the entire mitogenome of M. ambulans, which-despite the momentary lack of comparable data-provides important data of a unique and rare species for comparative aspects in the future. CONCLUSIONS: We were able to provide first sequence data and modern morphological data for the unique bryozoan, M. ambulans, which are both supporting an alcyonidioidean relationship within ctenostome bryozoans.

4.
Org Divers Evol ; 23(4): 743-785, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046835

RESUMEN

An endolithic lifestyle in mineralized substrates has evolved multiple times in various phyla including Bryozoa. The family Penetrantiidae includes one genus with ten extant and two fossil species. They predominantly colonize the shells of molluscs and establish colonies by chemical dissolution of calcium carbonate. Based on several morphological characters, they were described to be either cheilostome or ctenostome bryozoans. For more than 40 years, neither the characters of species identity and systematics nor the problem of their phylogeny was approached. Consequently, the aim of this study is to reevaluate species identities and the systematic position of the genus Penetrantia by analyzing at least six different species from eight regions with the aid of modern methods such as confocal laser scanning microscopy and 3D-reconstruction techniques. This study demonstrates that the musculature associated with the operculum and brood chamber shows significant differences from the cheilostome counterparts and seems to have evolved independently. Together with the presence of other ctenostome-like features such as true polymorphic stolons and uncalcified body wall, this finding supports a ctenostome affinity. Operculum morphology reveals many new species-specific characters, which, together with information about gonozooid morphology, tentacle number, and zooid size ranges, will enhance species identification. It also revealed a probable new species in Japan as well as potential cryptic species in France and New Zealand. In addition, this study increases the known distribution range of the family and its substrate diversity. Altogether, the new information collated here provides the basis for future work on a neglected taxon. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-023-00612-z.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...