Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Pharmaceutics ; 15(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111651

RESUMEN

To investigate the feasibility and tolerability of ultrasound and microbubbles (USMB)-enhanced chemotherapy delivery for head and neck cancer, we performed a veterinary trial in feline companion animals with oral squamous cell carcinomas. Six cats were treated with a combination of bleomycin and USMB therapy three times, using the Pulse Wave Doppler mode on a clinical ultrasound system and EMA/FDA approved microbubbles. They were evaluated for adverse events, quality of life, tumour response and survival. Furthermore, tumour perfusion was monitored before and after USMB therapy using contrast-enhanced ultrasound (CEUS). USMB treatments were feasible and well tolerated. Among 5 cats treated with optimized US settings, 3 had stable disease at first, but showed disease progression 5 or 11 weeks after first treatment. One cat had progressive disease one week after the first treatment session, maintaining a stable disease thereafter. Eventually, all cats except one showed progressive disease, but each survived longer than the median overall survival time of 44 days reported in literature. CEUS performed immediately before and after USMB therapy suggested an increase in tumour perfusion based on an increase in median area under the curve (AUC) in 6 out of 12 evaluated treatment sessions. In this small hypothesis-generating study, USMB plus chemotherapy was feasible and well-tolerated in a feline companion animal model and showed potential for enhancing tumour perfusion in order to increase drug delivery. This could be a forward step toward clinical translation of USMB therapy to human patients with a clinical need for locally enhanced treatment.

2.
Pharmaceutics ; 15(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111705

RESUMEN

Drug delivery to the retina is one of the major challenges in ophthalmology due to the biological barriers that protect it from harmful substances in the body. Despite the advancement in ocular therapeutics, there are many unmet needs for the treatment of retinal diseases. Ultrasound combined with microbubbles (USMB) was proposed as a minimally invasive method for improving delivery of drugs in the retina from the blood circulation. This study aimed to investigate the applicability of USMB for the delivery of model drugs (molecular weight varying from 600 Da to 20 kDa) in the retina of ex vivo porcine eyes. A clinical ultrasound system, in combination with microbubbles approved for clinical ultrasound imaging, was used for the treatment. Intracellular accumulation of model drugs was observed in the cells lining blood vessels in the retina and choroid of eyes treated with USMB but not in eyes that received ultrasound only. Specifically, 25.6 ± 2.9% of cells had intracellular uptake at mechanical index (MI) 0.2 and 34.5 ± 6.0% at MI 0.4. Histological examination of retinal and choroid tissues revealed that at these USMB conditions, no irreversible alterations were induced at the USMB conditions used. These results indicate that USMB can be used as a minimally invasive targeted means to induce intracellular accumulation of drugs for the treatment of retinal diseases.

3.
Theranostics ; 12(10): 4791-4801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832083

RESUMEN

Background: Enzyme-activatable prodrugs are extensively employed in oncology and beyond. Because enzyme concentrations and their (sub)cellular compartmentalization are highly heterogeneous in different tumor types and patients, we propose ultrasound-directed enzyme-prodrug therapy (UDEPT) as a means to increase enzyme access and availability for prodrug activation locally. Methods: We synthesized ß-glucuronidase-sensitive self-immolative doxorubicin prodrugs with different spacer lengths between the active drug moiety and the capping group. We evaluated drug conversion, uptake and cytotoxicity in the presence and absence of the activating enzyme ß-glucuronidase. To trigger the cell release of ß-glucuronidase, we used high-intensity focused ultrasound to aid in the conversion of the prodrugs into their active counterparts. Results: More efficient enzymatic activation was observed for self-immolative prodrugs with more than one aromatic unit in the spacer. In the absence of ß-glucuronidase, the prodrugs showed significantly reduced cellular uptake and cytotoxicity compared to the parent drug. High-intensity focused ultrasound-induced mechanical destruction of cancer cells resulted in release of intact ß-glucuronidase, which activated the prodrugs, restored their cytotoxicity and induced immunogenic cell death. Conclusion: These findings shed new light on prodrug design and activation, and they contribute to novel UDEPT-based mechanochemical combination therapies for the treatment of cancer.


Asunto(s)
Neoplasias , Profármacos , Doxorrubicina/uso terapéutico , Glucuronidasa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Profármacos/farmacología , Profármacos/uso terapéutico
4.
Pharmaceutics ; 14(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35335871

RESUMEN

The combination of ultrasound and microbubbles (USMB) has been applied to enhance drug permeability across tissue barriers. Most studies focused on only one physicochemical aspect (i.e., molecular weight of the delivered molecule). Using an in vitro epithelial (MDCK II) cell barrier, we examined the effects of USMB on the permeability of five molecules varying in molecular weight (182 Da to 20 kDa) and hydrophilicity (LogD at pH 7.4 from 1.5 to highly hydrophilic). Treatment of cells with USMB at increasing ultrasound pressures did not have a significant effect on the permeability of small molecules (molecular weight 259 to 376 Da), despite their differences in hydrophilicity (LogD at pH 7.4 from -3.2 to 1.5). The largest molecules (molecular weight 4 and 20 kDa) showed the highest increase in the epithelial permeability (3-7-fold). Simultaneously, USMB enhanced intracellular accumulation of the same molecules. In the case of the clinically relevant anti- C-X-C Chemokine Receptor Type 4 (CXCR4) nanobody (molecular weight 15 kDa), USMB enhanced paracellular permeability by two-fold and increased binding to retinoblastoma cells by five-fold. Consequently, USMB is a potential tool to improve the efficacy and safety of the delivery of drugs to organs protected by tissue barriers, such as the eye and the brain.

5.
Front Pharmacol ; 12: 768436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737709

RESUMEN

Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.

6.
Pharmaceutics ; 13(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834196

RESUMEN

The unique anatomy of the eye and the presence of various biological barriers make efficacious ocular drug delivery challenging, particularly in the treatment of posterior eye diseases. This review focuses on the combination of ultrasound and microbubbles (USMB) as a minimally invasive method to improve the efficacy and targeting of ocular drug delivery. An extensive overview is given of the in vitro and in vivo studies investigating the mechanical effects of ultrasound-driven microbubbles aiming to: (i) temporarily disrupt the blood-retina barrier in order to enhance the delivery of systemically administered drugs into the eye, (ii) induce intracellular uptake of anticancer drugs and macromolecules and (iii) achieve targeted delivery of genes, for the treatment of ocular malignancies and degenerative diseases. Finally, the safety and tolerability aspects of USMB, essential for the translation of USMB to the clinic, are discussed.

7.
Theranostics ; 11(19): 9557-9570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646386

RESUMEN

Purpose: Preclinical and clinical data indicate that contrast-enhanced ultrasound can enhance tumor perfusion and vessel permeability, thus, improving chemotherapy accumulation and therapeutic outcome. Therefore, we investigated the effects of high mechanical index (MI) contrast-enhanced Doppler ultrasound (CDUS) on tumor perfusion in breast cancer. Methods: In this prospective study, breast cancer patients were randomly assigned to receive either 18 minutes of high MI CDUS during chemotherapy infusion (n = 6) or chemotherapy alone (n = 5). Tumor perfusion was measured before and after at least six chemotherapy cycles using motion-model ultrasound localization microscopy. Additionally, acute effects of CDUS on vessel perfusion and chemotherapy distribution were evaluated in mice bearing triple-negative breast cancer (TNBC). Results: Morphological and functional vascular characteristics of breast cancer in patients were not significantly influenced by high MI CDUS. However, complete clinical tumor response after neoadjuvant chemotherapy was lower in high MI CDUS-treated (1/6) compared to untreated patients (4/5) and size reduction of high MI CDUS treated tumors tended to be delayed at early chemotherapy cycles. In mice with TNBC high MI CDUS decreased the perfused tumor vessel fraction (p < 0.01) without affecting carboplatin accumulation or distribution. Higher vascular immaturity and lower stromal stabilization may explain the stronger vascular response in murine than human tumors. Conclusion: High MI CDUS had no detectable effect on breast cancer vascularization in patients. In mice, the same high MI CDUS setting did not affect chemotherapy accumulation although strong effects on the tumor vasculature were detected histologically. Thus, sonopermeabilization in human breast cancers might not be effective using high MI CDUS protocols and future applications may rather focus on low MI approaches triggering microbubble oscillations instead of destruction. Furthermore, our results show that there are profound differences in the response of mouse and human tumor vasculature to high MI CDUS, which need to be further explored and considered in clinical translation.


Asunto(s)
Neoplasias de la Mama/terapia , Terapia Neoadyuvante/métodos , Terapia por Ultrasonido/métodos , Adulto , Animales , Carboplatino/administración & dosificación , Carboplatino/uso terapéutico , Medios de Contraste/farmacología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Microburbujas , Persona de Mediana Edad , Perfusión , Estudios Prospectivos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ultrasonografía , Ultrasonografía Doppler/métodos
8.
BMJ Open ; 10(11): e040162, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243800

RESUMEN

INTRODUCTION: In breast cancer, local tumour control is thought to be optimised by administering higher local levels of cytotoxic chemotherapy, in particular doxorubicin. However, systemic administration of higher dosages of doxorubicin is hampered by its toxic side effects. In this study, we aim to increase doxorubicin deposition in the primary breast tumour without changing systemic doxorubicin concentration and thus without interfering with systemic efficacy and toxicity. This is to be achieved by combining Lyso-Thermosensitive Liposomal Doxorubicin (LTLD, ThermoDox, Celsion Corporation, Lawrenceville, NJ, USA) with mild local hyperthermia, induced by Magnetic Resonance guided High Intensity Focused Ultrasound (MR-HIFU). When heated above 39.5°C, LTLD releases a high concentration of doxorubicin intravascularly within seconds. In the absence of hyperthermia, LTLD leads to a similar biodistribution and antitumour efficacy compared with conventional doxorubicin. METHODS AND ANALYSIS: This is a single-arm phase I study in 12 chemotherapy-naïve patients with de novo stage IV HER2-negative breast cancer. Previous endocrine treatment is allowed. Study treatment consists of up to six cycles of LTLD at 21-day intervals, administered during MR-HIFU-induced hyperthermia to the primary tumour. We will aim for 60 min of hyperthermia at 40°C-42°C using a dedicated MR-HIFU breast system (Profound Medical, Mississauga, Canada). Afterwards, intravenous cyclophosphamide will be administered. Primary endpoints are safety, tolerability and feasibility. The secondary endpoint is efficacy, assessed by radiological response.This approach could lead to optimal loco-regional control with less extensive or even no surgery, in de novo stage IV patients and in stage II/III patients allocated to receive neoadjuvant chemotherapy. ETHICS AND DISSEMINATION: This study has obtained ethical approval by the Medical Research Ethics Committee Utrecht (Protocol NL67422.041.18, METC number 18-702). Informed consent will be obtained from all patients before study participation. Results will be published in an academic peer-reviewed journal. TRIAL REGISTRATION NUMBERS: NCT03749850, EudraCT 2015-005582-23.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , COVID-19 , Canadá , Ciclofosfamida , Doxorrubicina/análogos & derivados , Estudios de Factibilidad , Humanos , Hipertermia , Espectroscopía de Resonancia Magnética , Polietilenglicoles , SARS-CoV-2 , Distribución Tisular
9.
Cancers (Basel) ; 12(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092093

RESUMEN

Sentinel lymph node biopsy (SLNB) is a diagnostic staging procedure that aims to identify the first draining lymph node(s) from the primary tumor, the sentinel lymph nodes (SLN), as their histopathological status reflects the histopathological status of the rest of the nodal basin. The routine SLNB procedure consists of peritumoral injections with a technetium-99m [99mTc]-labelled radiotracer followed by lymphoscintigraphy and SPECT-CT imaging. Based on these imaging results, the identified SLNs are marked for surgical extirpation and are subjected to histopathological assessment. The routine SLNB procedure has proven to reliably stage the clinically negative neck in early-stage oral squamous cell carcinoma (OSCC). However, an infamous limitation arises in situations where SLNs are located in close vicinity of the tracer injection site. In these cases, the hotspot of the injection site can hide adjacent SLNs and hamper the discrimination between tracer injection site and SLNs (shine-through phenomenon). Therefore, technical developments are needed to bring the diagnostic accuracy of SLNB for early-stage OSCC to a higher level. This review evaluates novel SLNB imaging techniques for early-stage OSCC: MR lymphography, CT lymphography, PET lymphoscintigraphy and contrast-enhanced lymphosonography. Furthermore, their reported diagnostic accuracy is described and their relative merits, disadvantages and potential applications are outlined.

10.
Pharmaceutics ; 12(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532061

RESUMEN

The poor pharmacokinetics and selectivity of low-molecular-weight anticancer drugs contribute to the relatively low effectiveness of chemotherapy treatments. To improve the pharmacokinetics and selectivity of these treatments, the combination of a doxorubicin-glucuronide prodrug (DOX-propGA3) nanogel formulation and the liberation of endogenous ß-glucuronidase from cells exposed to high-intensity focused ultrasound (HIFU) were investigated in vitro. First, a DOX-propGA3-polymer was synthesized. Subsequently, DOX-propGA3-nanogels were formed from this polymer dissolved in water using inverse mini-emulsion photopolymerization. In the presence of bovine ß-glucuronidase, the DOX-propGA3 in the nanogels was quantitatively converted into the chemotherapeutic drug doxorubicin. Exposure of cells to HIFU efficiently induced liberation of endogenous ß-glucuronidase, which in turn converted the prodrug released from the DOX-propGA3-nanogels into doxorubicin. ß-glucuronidase liberated from cells exposed to HIFU increased the cytotoxicity of DOX-propGA3-nanogels to a similar extend as bovine ß-glucuronidase, whereas in the absence of either bovine ß-glucuronidase or ß-glucuronidase liberated from cells exposed to HIFU, the DOX-propGA3-nanogels hardly showed cytotoxicity. Overall, DOX-propGA3-nanogels systems might help to further improve the outcome of HIFU-related anticancer therapy.

11.
Theranostics ; 10(4): 1884-1909, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042343

RESUMEN

Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes "therapy heterogeneity": a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Imagen Multimodal/métodos , Nanomedicina/métodos , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Animales , Resistencia a Antineoplásicos/genética , Ambiente , Humanos , Imagen por Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Ratones , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Imagen Óptica/métodos , Selección de Paciente , Preparaciones Farmacéuticas , Ratas , Tomografía Computarizada por Rayos X/métodos , Ultrasonografía/métodos
12.
Front Pharmacol ; 10: 1463, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866867

RESUMEN

Mistletoe lectin-1 (ML1) is a nature-derived macromolecular cytotoxin that potently induces apoptosis in target cells. Non-specific cytotoxicity to normal cells is one of the major risks in its clinical application, and we therefore propose to encapsulate ML1 in a nanocarrier that can specifically release its cargo intratumorally, thus improving the efficacy to toxicity ratio of the cytotoxin. We investigated the encapsulation of ML1 in ultrasound-sensitive liposomes (USL) and studied its release by high-intensity focused ultrasound (HAccessedIFU). USL were prepared by entrapment of perfluorocarbon nanodroplets in pegylated liposomes. The liposomes were prepared with different DPPC/cholesterol/DSPE-PEG2000 lipid molar ratios (60/20/20 for USL20; 60/30/10 for USL10; 65/30/5 for USL5) before combination with perfluorocarbon (PFC) nanoemulsions (composed of DPPC and perfluoropentane). When triggered with HIFU (peak negative pressure, 2-24 MPa; frequency, 1.3 MHz), PFC nanodroplets can undergo phase transition from liquid to gas thus rupturing the lipid bilayer of usl. Small unilamellar liposomes were obtained with appropriate polydispersity and stability. ML1 and the model protein horseradish peroxidase (HRP) were co-encapsulated with the PFC nanodroplets in USL, with 3% and 7% encapsulation efficiency for USL20 and USL10/USL5, respectively. Acoustic characterization experiments indicated that release is induced by cavitation. HIFU-triggered release of HRP from USL was investigated for optimization of liposomal composition and resulted in 80% triggered release for USL with USL10 (60/30/10) lipid composition. ML1 release from the final USL10 composition was also 80%. Given its high stability, suitable release, and ultrasound sensitivity, USL10 encapsulating ML1 was further used to study released ML1 bioactivity against murine CT26 colon carcinoma cells. Confocal live-cell imaging demonstrated its functional activity regarding the interaction with the target cells. We furthermore demonstrated the cytotoxicity of the released ML1 (I.E., After USL were treated with HIFU). The potent cytotoxicity (IC50 400 ng/ml; free ML1 IC50 345 ng/ml) was compared to non-triggered USL loaded with ML1. Our study shows that USL in combination with HIFU hold promise as trigger-sensitive nanomedicines for local delivery of macromolecular cytotoxins.

13.
Cancers (Basel) ; 11(10)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600958

RESUMEN

Tumor drug distribution and concentration are important factors for effective tumor treatment. A promising method to enhance the distribution and the concentration of the drug in the tumor is to encapsulate the drug in a temperature sensitive liposome. The aim of this study was to investigate the tumor drug distribution after treatment with various injected doses of different liposomal formulations of doxorubicin, ThermoDox (temperature sensitive liposomes) and DOXIL (non-temperature sensitive liposomes), and free doxorubicin at macroscopic and microscopic levels. Only ThermoDox treatment was combined with hyperthermia. Experiments were performed in mice bearing a human fibrosarcoma. At low and intermediate doses, the largest growth delay was obtained with ThermoDox, and at the largest dose, the largest growth delay was obtained with DOXIL. On histology, tumor areas with increased doxorubicin concentration correlated with decreased cell proliferation, and substantial variations in doxorubicin heterogeneity were observed. ThermoDox treatment resulted in higher tissue drug levels than DOXIL and free doxorubicin for the same dose. A relation with the distance to the vasculature was shown, but vessel perfusion was not always sufficient to determine doxorubicin delivery. Our results indicate that tumor drug distribution is an important factor for effective tumor treatment and that its dependence on delivery formulation merits further systemic investigation.

14.
Nanotechnology ; 30(26): 264001, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30836341

RESUMEN

Hypoxia is a characteristic feature of solid tumors and an important cause of resistance to radiotherapy. Hypoxic cell radiosensitizers have been shown to increase radiotherapy efficacy, but dose-limiting side effects prevent their widespread use in the clinic. We propose the encapsulation of hypoxic cell radiosensitizers in temperature-sensitive liposomes (TSL) to target the radiosensitizers specifically to tumors and to avoid unwanted accumulation in healthy tissues. The main objective of the present study is to develop and characterize TSL loaded with the radiosensitizer pimonidazole (PMZ) and to evaluate the in vitro efficacy of free PMZ and PMZ encapsulated in TSL in combination with hyperthermia and radiotherapy. PMZ was actively loaded into TSL at different drug/lipid ratios, and the physicochemical characteristics and the stability of the resulting TSL-PMZ were evaluated. PMZ release was determined at 37 °C and 42 °C in HEPES buffer saline and fetal bovine serum. The concentration-dependent radiosensitizing effect of PMZ was investigated by exposing FaDu cells to different PMZ concentrations under hypoxic conditions followed by exposure to ionizing irradiation. The efficacy of TSL-PMZ in combination with hyperthermia and radiotherapy was determined in vitro, assessing cell survival and DNA damage by means of the clonogenic assay and histone H2AX phosphorylation, respectively. All TSL-PMZ formulations showed high encapsulation efficiencies and were stable for 30 d upon storage at 4 °C and 20 °C. Fast PMZ release was observed at 42 °C, regardless of the drug/lipid ratio. Increasing the PMZ concentration significantly enhanced the effect of ionizing irradiation. Pre-heated TSL-PMZ in combination with radiotherapy caused a 14.3-fold increase in cell death as compared to radiotherapy treatment alone. In conclusion, our results indicate that TSL-PMZ in combination with hyperthermia can assist in improving the efficacy of radiotherapy under hypoxic conditions.


Asunto(s)
Quimioradioterapia/métodos , Hipertermia Inducida/métodos , Neoplasias Hipofaríngeas/metabolismo , Nitroimidazoles/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Estabilidad de Medicamentos , Humanos , Neoplasias Hipofaríngeas/terapia , Liposomas/química , Temperatura
15.
PLoS One ; 13(9): e0204063, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30226898

RESUMEN

INTRODUCTION: To increase the efficacy of chemoradiation and decrease its toxicity in normal tissue, a new concept is proposed, local radiosensitizer delivery, which combines triggered release of a radiosensitizer from thermosensitive liposomes with local hyperthermia and radiotherapy. Here, key aspects of this concept were investigated in vitro I) the effect of hyperthermia on the enhancement of radiotherapy by ThermoDox (thermosensitive liposome containing doxorubicin), II) the concentration dependence of the radiosensitizing effect of doxorubicin and III) the sequence of doxorubicin, hyperthermia and radiotherapy maximizing the radiosensitizing effect. METHODS: Survival of HT1080 (human fibrosarcoma) cells was measured after exposure to ThermoDox or doxorubicin for 60 minutes, at 37 or 43°C, with or without irradiation. Furthermore, cell survival was measured for cells exposed to different doxorubicin concentrations and radiation doses. Finally, cell survival was measured after applying doxorubicin and/or hyperthermia before or after irradiation. Cell survival was measured by clonogenic assay. In addition, DNA damage was assessed by γH2AX staining. RESULTS: Exposure of cells to doxorubicin at 37°C resulted in cell death, but exposure to ThermoDox at 37°C did not. In contrast, ThermoDox and doxorubicin at 43°C resulted in similar cytotoxicity, and in combination with irradiation caused a similar enhancement of cell kill due to radiation. Doxorubicin enhanced the radiation effect in a small, but significant, concentration-dependent manner. Hyperthermia showed the strongest enhancement of radiation effect when applied after irradiation. In contrast, doxorubicin enhanced radiation effect only when applied before irradiation. Concurrent doxorubicin and hyperthermia immediately before or after irradiation showed equal enhancement of radiation effect. CONCLUSION: In vitro, ThermoDox resulted in cytotoxicity and enhancement of irradiation effect only in combination with hyperthermia. Therefore hyperthermia-triggered radiosensitizer release from thermosensitive liposomes may ultimately serve to limit toxicities due to the radiosensitizer in unheated normal tissue and result in enhanced efficacy in the heated tumor.


Asunto(s)
Doxorrubicina/análogos & derivados , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Fibrosarcoma/patología , Humanos , Hipertermia Inducida , Polietilenglicoles/química , Polietilenglicoles/farmacología , Prueba de Estudio Conceptual , Fármacos Sensibilizantes a Radiaciones/efectos adversos , Fármacos Sensibilizantes a Radiaciones/farmacología
16.
Int J Pharm ; 548(2): 778-782, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29126907

RESUMEN

Fast hyperthermia (i.e. 39-42 °C) triggered doxorubicin release from lysolipid-containing thermosensitive liposomes (LTSL) in the tumor vasculature has been demonstrated to result in considerable enhancement of bioavailable drug levels in heated tumor tissue in preclinical tumor models. However, there is also significant leakage of doxorubicin already at 37 °C in the bloodstream, making these LTSL less efficient and increasing the risk for systemic toxicity. In conventional liposomes, cholesterol is incorporated in the bilayer to increase the stability of the liposomes. Here, we investigate the effect of cholesterol inclusion on the doxorubicin release characteristics of LTSL at 37 °C and hyperthermic temperatures. For this purpose, three LTSL formulations with 0, 5 and 10 mol% cholesterol were prepared. Inclusion of cholesterol reduced the undesired doxorubicin leakage at 37 °C in Hepes-buffered saline (HBS) as well as in fetal bovine serum (FBS). The incorporation of cholesterol in the LTSL bilayers did not influence the hyperthermia-triggered release property of the LTSL. These results were supported by DSC measurements. Therefore, in conclusion, our data indicate that cholesterol inclusion in LTSL offers a simple solution to the problem of significant leakage of doxorubicin from LTSL already at 37 °C in the bloodstream.


Asunto(s)
Antibióticos Antineoplásicos/farmacocinética , Colesterol/farmacocinética , Doxorrubicina/farmacocinética , Liberación de Fármacos , Calor , Animales , Antibióticos Antineoplásicos/química , Bovinos , Colesterol/química , Doxorrubicina/química , Hipertermia Inducida , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/farmacocinética , Liposomas
17.
Int J Mol Sci ; 18(8)2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28757579

RESUMEN

Microbubbles-assisted ultrasound (USMB) has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment. Based on this rationale, we investigated whether USMB triggers exocytosis resulting in the release of extracellular vesicles (EVs). USMB was performed on a monolayer of head-and-neck cancer cells (FaDu) with clinically approved microbubbles and commonly used ultrasound parameters. At 2, 4, and 24 h, cells and EV-containing conditioned media from USMB and control conditions (untreated cells, cells treated with microbubbles and ultrasound only) were harvested. EVs were measured using flow cytometric immuno-magnetic bead capture assay, immunogold electron microscopy, and western blotting. After USMB, levels of CD9 exposing-EVs significantly increased at 2 and 4 h, whereas levels of CD63 exposing-EVs increased at 2 h. At 24 h, EV levels were comparable to control levels. EVs released after USMB displayed a heterogeneous size distribution profile (30-1200 nm). Typical EV markers CD9, CD63, and alix were enriched in EVs released from USMB-treated FaDu cells. In conclusion, USMB treatment triggers exocytosis leading to the release of EVs from FaDu cells.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Medios de Cultivo Condicionados/química , Sistemas de Liberación de Medicamentos/métodos , Endocitosis , Citometría de Flujo , Humanos , Microburbujas , Microscopía Electrónica , Sonicación , Ultrasonografía
18.
Acta Biomater ; 61: 54-65, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28801266

RESUMEN

Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy into heat, and lysolipid-incorporated TSL (LTSL) loaded with doxorubicin hydrochloride (DOX). NIR irradiation of the resulting hydrogels (referred to as "lipogels") with 808nm laser light increased the temperature of the illuminated areas, leading to the release of the liposomal cargo. Levels of DOX that release from the "smart" composites were dependent on the concentration of NIR nanotransducers loaded in the lipogel, the intensity of the electromagnetic energy deposited and the irradiation regime. Released DOX retained its bioactivity, as shown in cultures of epithelial carcinoma cells. Finally, the developed drug delivery platform was refined by using NIR-photoabsorbers based on copper sulfide NPs to generate completely biodegradable composites as well as through the incorporation of cholesterol (Ch) in LTSL formulation, which lessens leakiness of the liposomal cargo at physiological temperature. This remotely controlled system may suit well for those therapies that require precise control over the dose of delivered drug in a defined spatiotemporal framework. STATEMENT OF SIGNIFICANCE: Hydrogels composed of fibrin embedding nanoparticles responsive to near infrared (NIR) energy and thermosensitive liposomes loaded with doxorubicin hydrochloride (DOX), were prepared by in situ polymerization. NIR-light irradiation of these constructs, referred to as "NIR responsive lipogels", results in the controlled release of DOX to the surrounding medium. This technology may use fully degradable components and can preserve the bioactivity of liposomal cargo after remote triggering to finely regulate the dose and bioavailability of delivered payloads. NIR responsive lipogels technology overcomes the limitations of drug release systems based on the combination of liposomes and degradable polymeric materials, which in many cases lead to insufficient release at therapy onset or to overdose during high degradation period.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Geles/química , Rayos Infrarrojos , Liposomas/química , Animales , Bovinos , Fibrina/farmacología , Oro/química , Hidrogeles/química , Liposomas/ultraestructura , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Temperatura
19.
Acta Biomater ; 48: 110-119, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27773752

RESUMEN

Lysolipid-based thermosensitive liposomes (LTSL) embedded in a chitosan-based thermoresponsive hydrogel matrix (denoted Lipogel) represents a novel approach for the spatiotemporal release of therapeutic agents. The entrapment of drug-loaded liposomes in an injectable hydrogel permits local liposome retention, thus providing a prolonged release in target tissues. Moreover, release can be controlled through the use of a minimally invasive external hyperthermic stimulus. Temporal control of release is particularly important for complex multi-step physiological processes, such as angiogenesis, in which different signals are required at different times in order to produce a robust vasculature. In the present work, we demonstrate the ability of Lipogel to provide a flexible, easily modifiable release platform. It is possible to tune the release kinetics of different drugs providing a passive release of one therapeutic agent loaded within the gel and activating the release of a second LTSL encapsulated agent via a hyperthermic stimulus. In addition, it was possible to modify the drug dosage within Lipogel by varying the duration of hyperthermia. This can allow for adaption of drug dosing in real time. As an in vitro proof of concept with this system, we investigated Lipogels ability to recruit stem cells and then elevate their production of vascular endothelial growth factor (VEGF) by controlling the release of a pro-angiogenic drug, desferroxamine (DFO) with an external hyperthermic stimulus. Initial cell recruitment was accomplished by the passive release of hepatocyte growth factor (HGF) from the hydrogel, inducing a migratory response in cells, followed by the delayed release of DFO from thermosensitive liposomes, resulting in a significant increase in VEGF expression. This delayed release could be controlled up to 14days. Moreover, by changing the duration of the hyperthermic pulse, a fine control over the amount of DFO released was achieved. The ability to trigger the release of therapeutic agents at a specific timepoint and control dosing level through changes in duration of hyperthermia enables sequential multi-dose profiles. STATEMENT OF SIGNIFICANCE: This paper details the development of a heat responsive liposome loaded hydrogel for the controlled release of pro-angiogenic therapeutics. Lysolipid-based thermosensitive liposomes (LTSLs) embedded in a chitosan-based thermoresponsive hydrogel matrix represents a novel approach for the spatiotemporal release of therapeutic agents. This hydrogel platform demonstrates remarkable flexibility in terms of drug scheduling and sequencing, enabling the release of multiple agents and the ability to control drug dosing in a minimally invasive fashion. The possibility to tune the release kinetics of different drugs independently represents an innovative platform to utilise for a variety of treatments. This approach allows a significant degree of flexibility in achieving a desired release profile via a minimally invasive stimulus, enabling treatments to be tuned in response to changing symptoms and complications.


Asunto(s)
Deferoxamina/farmacología , Liberación de Fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Materiales Biocompatibles/farmacología , Movimiento Celular/efectos de los fármacos , Quitosano/química , Glicerofosfatos/química , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Hipertermia Inducida , Liposomas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
J Control Release ; 238: 157-165, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27476609

RESUMEN

The possibility to enhance drug delivery by using ultrasound in combination with microbubbles (USMB) is extensively studied. So far, these studies have focused on the delivery and efficacy of a single drug, e.g. in chemotherapy. In this study, we investigated the intracellular delivery of cisplatin by USMB and the subsequent increased efficacy in combination with radiotherapy in a head and neck cancer cell line in vitro. After USMB-mediated intracellular delivery was verified using the model-drug SYTOX® Green, we investigated the efficacy of cisplatin when combined with USMB and radiotherapy and measured whether intracellular cisplatin concentration was enhanced after applying USMB. In addition, the effect of USMB on cisplatin and radiotherapy-induced DNA damage was studied. Flow cytometry showed that USMB treatment increased the average percentage SYTOX® Green positive cells from 2.2% to 34.5%. Clonogenic assays demonstrated that exposure to USMB significantly increased the efficacy of cisplatin combined with radiotherapy. The enhanced efficacy was associated with increased intracellular cisplatin levels, which were 2.7-fold higher when cisplatin was combined with USMB. As a result, an 82% increase in levels of DNA double strand breaks was found when cisplatin was combined with USMB, compared to cisplatin only (p<0.05). In conclusion, cisplatin uptake was significantly increased by USMB, which resulted in enhanced levels of DNA damage and increased efficacy of cisplatin in combination with radiotherapy in vitro.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias de Cabeza y Cuello/terapia , Ultrasonido/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Quimioradioterapia , Cisplatino/farmacocinética , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Microburbujas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...